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Abstract 

In this paper, we study the magnetohydrodynamic Falkner-Skan flow of an electrically 

conducting viscous fluid over a permeable plate embedded in a porous medium with uniform 

porous matrix. The approximate solutions for the boundary layer equations of the flow are 

presented by two methods (i) DTM-Pade for obtaining analytical solution, (ii) Runge-Kutta Method 

for numerical solution. The results are compared with earlier works (i) without magnetic field, (ii) 

without magnetic field and porous medium. It is observed that the results of the present study are 

in good agreement with previous works in some particular cases establishing the generality of the 

present study as well as consistency and accuracy of the methods applied to Darcian MHD 

boundary layer wedge flow. From the flow analysis it is suggested that application of magnetic 

field and embedding the wedge surface in a porous matrix contribute to stream lined flow. Further, 

the progressive DTM-Pade i.e. higher order Pade yields better result and therefore an effective 

method for solution of non-linear boundary value problem. 
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1. Introduction 

There are some fluids which do not obey the Newton’s law of viscosity; these fluiods are 

characterized as the Non-Newtonian fluids. Study of Non-Newtonian fluids has numerous scopes 
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in industrial, engineering and biological applications. Rajagopal et al. [1] has studied the Falkner-

Skan flows of a homogeneous incompressible fluid f second grade past a wedge placed 

symmetrically with respect to the flow direction. Their study includes the flow past a flat plate and 

the flow near a stagnation point as special cases. In recent years a large number of investigations 

dealing with the Falkner-Skan problem under various aspects have been discussed extensively for 

viscous fluid [2,3,4]. Olagunju [5] considered the flow problem for viscoelastic fluid. Massoudi 

and Ramezan [6] discussed the effect of injection or suction on the Falkner-Skan flows of second 

grade fluids. Yao [7] also presented approximate analytical solution to the Falkner-Skan wedge 

flow with the permeable wall of uniform suction. 

Moreover, Abbasbandy and Hayat [8] suggested a series solution for the Falkner-Skan wedge 

flow. They solved the nonlinear governing equations by homotopy analysis method. Ishak et al. [9] 

considered the steady MHD boundary layer flow of a conducting fluid subject to a variable 

transverse magnetic field along a moving wedge. More recently Robert and Vajravelue [10], Parand 

et al. [11] and Abbasbandy et al. [12] considered the Falkner-Skan MHD flow of Oldroyd-B fluid. 

The above-mentioned authors have not considered the flow through porous medium. Kim [13] 

investigated the flow of power-law fluid through porous medium.  

Now coming to method of solution, the Differential Transform Method (DTM) is one of the 

effective and reliable numerical method for handling both linear and nonlinear differential 

equations. Zhao [14] first introduced an iterative procedure for analytical solution of ordinary or 

partial differential equations in the form of a polynomial. The advantages of DTM are high 

accuracy and minimal calculations. It can be applied directly to nonlinear differential equation in 

physics and mathematics without requiring linearization. DTM has some drawbacks, it is valid in 

a small region but in an unbounded domain it is not valid. This is because by using DTM, we obtain 

a series solution which is divergent when the variable of the problem goes to infinity. For this 

reason a combination of the DTM and the Pade approximation [15-18] has been used to obtain 

approximated solutions. 

The objective of the present study is two-fold. The study of wedge flow through porous media 

subjected to magnetic field leads to a modified Falkner-Skan equation. Secondly to examine the 

suitability of the methods (i) Numerical method (R-K method) (ii) DTM-Pade approximants 

analytical method. In the course of discussion, the effects of magnetic field, permeability of the 

medium, suction/injection at the plate and wedge angle are shown and the comparison of the works 

of previous authors [19] are made. 

 

2. Governing Equations 
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In this section we consider a steady MHD boundary layer flow of a viscous incompressible 

electrically conducting fluid over a permeable wall through a uniform porous medium. The Darcy 

model has been applied to account for the permeability of the medium. The magnetic field acts 

transversely to the flow. The magnetic Reynolds number is considered to be small so that the 

induced Magnetic field is negligible. The strength of the electric field, due to polarization of the 

electric charges is to be negligibly small. U(x)=axm is the velocity of the exterior flow over the 

wedge, K’
p(x)=k’px

1-m is the porosity parameter, B(x)=B0x
(m-1)/2 is the magnetic field. Using these 

assumptions, the boundary layer equations are 
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The corresponding boundary conditions are given by 
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where vw=vox
(m-1)/2 is the suction or blowing velocity across the surface of the boundary wall as 

vw<0 for suction and vw>0
 
for blowing. To examine the boundary layer flow adjacent to the wall, 

the following transformations are used. 
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The velocity components  
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and hence  
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With the help of equation (6), equation (2) and the boundary conditions (3) are transformed to 
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where 

 

 

2
2 1 22 0

, ,
(1 ) (1 )

1/2
2 2

.0
( 1) 1

B
M

a m K K a mp p

m
C v and

m a m

 






 
 

 
 

 
 
 

  

 

C is positive for blowing and negative for suction. The flow is divergent for β>0 and is 

convergent for β<0. 

 

3. Approximate Solution by Using Dtm-pade 

Differential transformation method (DTM) based on Taylor expansion. This method tries to 

find coefficients of series expansion of unknown function by using the initial data on the problem. 

Basic definitions and operations of differential transformation are introduced as follows. 

 

Definition 1. 

The one dimensional differential transform of a function y(x) at the point x=xo
 
is defined as 

follows: 
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where y(x) is the original function and Y(k) is the transformed function. 

 

Definition 2. 

The differential inverse transform of ( )Y k is defined as follows: 
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The differential transform of functions are shown in the following table. 
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The pade approximant is based on the notion of rational approximation for functions. The 

function f(x) is to be approximated over a small portion of its domain [a,b]. Then this can be used 

to compute for any value of x that lies outside the interval [a,b]. 

A rational approximation to f(x) on the interval [a,b] is the quotient of two polynomials PN(x) 

and QM(x) of degrees N and M respectively. We use the notation RN,M(x) to denote this quotient: 
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The method of Padé requires that f(x) and its derivatives are continuous at x=0. There are two 

reasons for the arbitrary choice of x=0. First, it makes the manipulations simpler. Second, a change 

of variable can be used to shift the calculations over to an interval that contains zero. The 

polynomials used in (11) are  
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The polynomials (12) and (13) are constructed so that f(x) and RN,M(x) agree at 0x  and their 

derivatives up to N+M agree at x=0. In the case Q0(x)=1, the approximation is just the Maclaurin 

expansion for f(x). For a fixed value of N+M the error is smallest when PN(x) and QM(x) have the 

same degree or when PN(x) has degree one higher than QM(x) [20]. 

We should implement the differential transform for equation (7) and the following iterative 

formula can be obtained using the fundamental operation of the DTM 

 

1 12
( 3) (( )( 1) ( 1)

( 1)( 2)( 3)

12
( ) ( ) (( 1 )( 2 ) ( ) ( 2 )

0

( 1)( 1 ) ( 1) ( 1 ))).

F k M k F k
k k k K p

k
M k k i k i F i F k i

iK p

i k i F i F k i

 



    
  

         


      

.                                                                    (14) 

 

where δ(k) is the Kroneker delta. 

Here, f’(0) is not known. In order to find the numerical value of f’(0), which is the skin friction 

coefficient, the series obtained by the DTM and the diagonal Pade approximants of different 

degrees are to be combined. Let f’(0)=2α. Now equation (7) subjected to the following initial 

conditions is solved by using DTM 
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The DTM of (15) is as follows 
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Substituting equation (16) into the iterative formula (14) and taking different values of k, we 

have 
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Using all the terms of F(x) we can get the solution to the initial value problems (7) and (15) in 

power series form,  
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Now, taking N=2 and using the power series and the Pade approximant of f(η), we get the 

solution of equations (7) with boundary conditions (8). After obtaining f’(0) we compute f(η) and 

f’(η) for various values of the parameters β,C,M and KP. For example, the Pade approximants to 

f(η) and f’(η) for β=4/3, C=1/5, M=3 and KP
 
=0.5 are as follows: 
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4. Results and Discussion 

The effects of the emerging parameter characterizing the wedge flow in the presence of 

magnetic field and porous matrix are detailed in the following lines. From governing equation (7) 

we can discuss the following cases 

(i) 0,M K p    (Falkner-Skan equation with modified boundary conditions). 

(ii) 0,M K p    [19]. 

Case (i) represents the wedge flow of a non-conducting viscous flow in the absence of magnetic 

field and without porous medium. Case (ii) represents the case of conducting fluid flow without 

porous medium. The equation (7) with the boundary conditions (8) has been solved by an 

approximate analytical method DTM-Pade and Numerical method, R-K Method with Shooting, a 

self corrective procedure. The consistency of the solution of the governing equation (7) by DTM-

Pade is evident from (19) and (20) as the expressions satisfy the boundary conditions (8). 

The dimensionless stream functions f(η) and velocity f(η) are presented in the Figures 1 to 9. It is 

interesting to note that Figsures 1(a) and (b) (curve-IV*) without porous medium coincides with 

Figure 1 of [19]. Thus, the present result agrees with [19] in a particular case. Moreover, the results 

of DTM-Pade and Numerical methods in the present study are found to be in good agreement.  

 

 
Fig.1(a). Stream Function for β=4/3 and C=-1 (DTM-Pade) 
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Fig.1(b). Stream Function for β=4/3 and C=-1 (R-K Method) 

We now proceed to discuss the flow characteristics of various physical parameters such as 

magnetic field strength, permeability of the medium and wedge angle. Figures 1(a), 2, 3 and 4 

exhibit the graphical representations of f, the stream function, obtained by DTM-Pade. Their 

counter parts obtained by R-K method. But in order to save space we have presented Figure 1(b) 

only. It is seen that the values of f computed by both the methods for various values of the magnetic 

parameter M, wedge angle β, permeability parameter KP
 
and suction/blowing parameter C are in 

good agreement. Further, it is seen that f increases with M but decreases slightly in the presence of 

suction/blowing. Thus, thinning of boundary layer occurs due to suction which is a standard 

practice for controlling boundary layer. 

 

 
Fig.2. Stream Function for β=4/3 and C=1/5 (DTM-Pade) 
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Fig.3. Stream Function for β=-3 and C=1/5 (DTM-Pade) 

 

Figures 5(a) to 7(a) show the velocity distribution for different values of M, β, KP and C. Their 

counter parts by R-K Method are exhibited through Figures 5(b) to 7(b). From Figures 5(a) and 

(b), it is seen that the velocity increases with an increase in magnetic parameter but the presence of 

porous matrix reduces it at all points in the presence of injection at the surface. On careful study of 

velocity profiles by DTM-Pade and R-K method, it is revealed that convergence of DTM-Pade is 

delayed in comparisons with R-K method, as the fluid flow attains ambient state latter in case of 

DTM-Pade.     

 

 
Fig.4. Stream Function for β=-3 and C=-1 (DTM-Pade) 
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Fig.5(a). Velocity profile for β=4/3 and C=1/5 (DTM-Pade) 

 

 
Fig.5(b). Velocity profile for β=4/3 and C=1/5 (R-K Method) 

 

Figures 6(a) and (b) are devoted to the case of blowing (C>0) as well as converging flow 

(β<0). It is seen that absence of magnetic field accelerates the attainment of ambient state 

irrespective of the presence/absence of porous matrix. This is true for both the methods (DTM-

Pade and R-K method). Figures 6(a) and (b) show that for negative value of β the velocity shoots 

up near the plate in the presence of blowing. From the R-K method (Figure 6(b)) it is clear that 

slightly flow instability is marked near the plate in the absence of magnetic field (M=0), i.e. a point 

of inflexion appears at η≈0.2 . 
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Fig.6(a). Velocity Profile for β=-3 and C=1/5 (DTM-Pade) 

 

 
Fig.6(b). Velocity Profile for β=-3 and C=1/5  (R=K Method) 

 

 
Fig.7(a). Velocity Profile for β=-3 and C=-1 (DTM-Pade) 

 

Figures 7(a) and (b) show the similar velocity profiles for suction at the plate. On careful 

analysis it is remarked that for negative wedge angle (converging flow) velocity distribution is not 

that smooth as in case of positive wedge angle (diverging flow). 

One striking feature of the velocity profiles IV and VI in Figure 6(a) (case of blowing); II and IV 

in Figure 7(a) (case of suction); is that in the absence of magnetic field i.e. M=0 the velocity 

increases sharply in the layers close to the plate and attains the ambient state far off. 
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Fig.7(b). Velocity profile for β=-3 and  C=-1 (R-K Method) 

 

Thus, it is concluded that the presence of magnetic field imbibes the resistive electromagnetic 

force which controls the sharp rise and imposes the stability of flow in both converging and 

diverging flow. 

 

Conclusions 

(1) The presence of magnetic field embedding the resistive electromagnetic force which 

controls the sharp rise and imposes the stability of flow in both converging and diverging flow. 

Hence presence of magnetic field and embedding the wedge surface in a porous medium contribute 

to stream lined flow. 

(2) DTM associated with Pade approximant is suitable for the solution of non-linear boundary 

value problem. 

In this paper [2/2] Pade approximant has been used to approximate the solution generated by 

DTM. The higher order may yield better result. 
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Nomenclature 

B  magnetic field 

0B  magnetic field strength 

C  suction or blowing parameter 

f  dimensionless stream function 

f   dimensionless tangential velocity 

pK   porosity parameter 

pK  permiability parameter 

M  magnetic field parameter 

m  constant parameter 

U  stream velocity 

u  velocity of the fluid along x-axis 

v  velocity of the fluid along y-axis 

wv  suction or blowing velocity  

x  axis along the wall 

y  axis perpendicular to the wall 

 

Greek Symbols 

  wedge parameter 

  similarity variable 

  positive constant 

  kinematic viscosity 

  fluid density 

  electric conductivity 

  stream function 
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