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Abstract  

This paper provides a method for a controllable nonholonomic mechanical system. By use of 

the nonholonomy of the disk’s rolling constraint in the plane and the condition of chained form 

conversion, a multi-joint nonholonomic manipulator, which uses only two actuators and can be 

converted into chained form and achieves control simplicity, is presented. The Frobenius and Chow 

theorems prove that the nonholonomic manipulator is controllable and satisfies the condition of 

chained form transformation. For further verification, the manipulator prototype with two actuators 

and three joints is fabricate. The validity of motion planning of the manipulator prototype is 

demonstrated by simulation and experimental results. The conclusion indicates that the three joints 

nonholonomic manipulator prototype can move to terminal configuration smoothly with singularity 

avoidance method and it is feasible to design a controllable and nonholonomic mechanical system. 
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1. Introduction 

With the extensive application of robot, the conflict between complexity of mechanism and 

effectiveness of control reflects to the requirement of integrated design between mechanical 

structure and control scheme. Therefore, it’s significant to explore the way of integration of robotic 

mechanics and cybernetics. This paper attempts to bridge over gap between mechanical design and 

nonlinear control theory of nonholonomic manipulator.  

Yoshihiko Nakamura proposes nonholonomic manipulator which combines friction ball 

mechanism of decomposition of vector with nonholonomic control theory[1]. SØrdalen.O.J exploits 
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the steering mechanism of trailer system based on motion planning conditions to achieve the motion 

control of the wheeled mobile robot with n trailers [2, 3]. Inspired by above studies, we try to 

design a novel nonholonomic manipulator whose kinematic model possesses a triangular structure 

for conversion into chained form [4].  

There are many works involved in designing new mechanism using nonholonomic constraints. 

[5] presents a chained-form transformable WMR with four inputs. A nonholonomic parallel 

locating platform, which can be converted into chained form with two inputs and four outputs, is 

proposed in [6]. Sun hanxu develops spherical robot which uses counter weight driven by motor to 

change the position of center of gravity and achieve the rolling on the plane [7]. The bilinear model 

of the system is obtained by the rational installation of the actuator position and Euler parameter 

description of the configuration to convert into chained form and achieve control simplicity [8, 9]. 

Two sets of active steering systems are introduced to convert the system into four-control three-

chain (Single-generator) [10]. 

On the basis of Frobenius and Chow theorems, the manipulator is controllable and the 

kinematic model can be diffeomorphically convertible to the chained form. The motion planning 

simulation and experiment results prove the validity and usefulness of the integrated design of the 

nonholonomic manipulator. 

 

2. Analysis of Controllable Nonholonomic System 

Generally, the nonholonomic system, whose kinematic model can express non-integrable 

velocity constraint, can be considered as nonholonomic system, in which the numbers of control 

input are less than dimensionality of reachable configuration space. Furthermore, chained form 

system is a standard controllable nonholonomic system with existing controllers. As long as a 

nonholonomic system is equal to the chained form or can be transformed into chained form, it 

means that existing control laws can be applied. The condition of conversion into chained form is 

presented as the following theorem. 

Theorem 1[11, 12]: Let a driftless, two-input system with the triangular structure is given by: 
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where )( 1ii qf  is a smooth function in the neighborhood  of 0qq  , iq  is generalized coordinates. 
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Then, a coordinate transformation and an input feedback transformation converting into the 

chained form in the neighborhood of 0qq   can be expressed as follows: 
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where { }12∈ ni ,, , [ ]T
nii qqq = , [ ]T

nniiii qfqfqf )()(=)( 111  . 

The nonholonomic system expressed eqs.(1) can be converted into chained form system as 

follows: 
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where ni ,,= 3 . 

The eqs. (3) and (4) are called coordinate transformation and feedback transformation for 

chained form conversion, respectively. Obviously, the nonholonomic mechanical system can be 

converted into chained form as long as it is designed from viewpoint of kinematic model of 

satisfying condition of chained form conversion, then many existing controllers can be applied to 

motion planning of the nonholonomic system. The method for design of controllable nonholonomic 

mechanical system is shown in Fig. 1. 

Following the way of design as shown in Fig. 1, the first step is to mechanism design 

subjecting to nonholonomic constraint on the basis of theory of nonholonomic mechanics and 

mechanism. On the other hand, the conditions of chained form conversion should be established in 

the light of nonholonomic motion planning and control theory. These two independent basic 

designs are related to the complexity of structure of nonholonomic mechanical system and the 
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extent of difficulty of control. After that, the designed mechanism with nonholonomic constraint 

constitutes motion transmission chain which is conformed to the condition of chained form 

conversion. And the nonholonomic mechanical system can be obtained according to the model of 

motion transmission chain. Evidently, the key of this method is to build the velocity constraint 

model which fulfills the condition of chained form conversion. Actually, the nonholonomic 

mechanical system is not only independently designed from the viewpoint of mechanism, but also 

from the integration of conditions of control. And the nonholonomic mechanical system designed 

will be controllable and carry out motion planning with existing control laws for chained form. 

Nonholonomic mechanics and mechanism

Mechanism design based on nonholonomic constraint

Nonholonomic motion planning

The method of chianed form conversion

The condition of chained form conversion for kinematic model of nonholonomic mechanism 

Design nonholonomic mechanism from viewpoint  which fulfills the condition of chained form conversion
 

Fig. 1. Design of Controllable Nonholonomic Mechanical System 

 

3. Nonholonomic Manipulator and Characteristic Analysis 

3.1 Design of Nonholonomic Manipulator 

According to the nonholonomic constraints of disk’s rolling without slipping contact in the 

plane and the approach mentioned above, we present a nonholonomic manipulator which consists of 

n joints using two actuators[13]. Fig. 2 shows the structural diagram of joint i of the nonholonomic 

manipulator. There are two sets of friction disk mechanism in each of joint except the last one. P1, 

P2 and P3 represent the rolling without slipping contact points between disk A and disk B. The disk 

Bi, with radius r1, rotates around the fixed axis with a given angular velocity 
i  which makes disk 

Ai rotate. The angular velocity 
i  of disk Ai is divided into two parts, one is taken as velocity input 

of disk Bi+1 through a set of bevel gear and spur gear; another makes the next joint i+1 rotate 

through a set of friction disk mechanism and timing belt. 
i
  and 

i
  represent the angular velocity of 

disk B′i  with radius 2r  and the angular velocity of disk A′i, respectively. R  and 3r  express the 

distance from rotate axle of disk A to rolling contact points. The manipulator’s nonholonomic 

constrains are due to the rolling contact between disk Ai and disk Bi. The kinematic model of the 

manipulator with n joints and two actuators can be described as follows: 
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Fig.2. Structure Diagram of Joint i Mechanical System 

It’s noteworthy that this kinematic model has a similar structure as eqs.(3), but not identical. 

By setting configuration variables T
nnq ],,,,[ 211   , the kinematic model can be rewritten 

as following equations: 
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jgii kp  , 0



n ,  ni ,,3,2  . This formulation of the kinematic model has the 

same mathematical structure with eqs.(2). The following section will prove eqs.(7) of nonholonomy,  

controllability and diffeomorphism for conversion into chained form. 

3.2 The Properties of Nonholonomic Manipulator 

The demonstration of nonholonomy and controllability for nonholonomic manipulator will be 

shown in [11]. Although the Frobenius and Chow can prove it, the difficulty is how to find a good 

family of vector fields and give a proof for n dimensional system and not only when n is specified. 

The eqs.(6) can be expressed as follows: 

2211 )()( uqguqgq                                                                                                                    

(8) 

where )(1 qg  and )(2 qg  are vector fields along with 1  and 1
  direction. This system is said to be 

driftless, meaning to say that the state of the system does not drift when the controls are set to zero. 

Theorem 2 [11] (Frobenius) A regular distribution is integrable if and only if it is involutive. 

Theorem 3 (Chow) The control system (8) is locally controllable at nRq   if n
qRT .   is a 
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ic cos . And the following equations can be 

concluded from eqs.(6): 
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From eqs.(9)-(16) the determinant of vector fields for eq.(8) is: 

0)det(                                                                                                                                          
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where },,,,{ 21 nn YXXX  . 
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where },3,2,1{ nk   and jik , . 

Actually, the element of set },,,,{ 21 nn YXXX   constitutes a set of basis for 1nR and take the 

span over 1nR . 

Since the determinant does not vanish everywhere and the distribution which vector fields 

)(1 qg  and )(2 qg  span is not involutive. We have the following conclusion that the nonholonomic 

manipulator defined in Section 3.1 is controllable and nonholonomy.  

3.3 The Diffeomorphism for Transformation 

In section 3.1, eqs.(7) can be converted into chained form according Theorem 1. Consider a 

map: 

11:)(   nn IRIRqh  

which takes values in the state space T
nnq ],,,,[ 211    and maps them in the chained form 

space T
nzzzz ],,,[ 21  . We will show that )(qh  is a local diffeomorphism by demonstrating 

that the Jacobian of )(qh  is nonsingular. 



176 

 

q

qh
xJ





 )(

)(
 

where T
nnq ],,,,[ 211   , since eqs.(7) has the triangular structure, we see form the map 

)( ii qh  in Theorem 1 that 

0)(, iji qJ      )( ji   

The matrix )(xJ  is upper triangular. )(xJ  is nonsingular if and only if the diagonal elements 

satisfy the condition of 0, iiJ . From eqs.(3) we have that for  1,,3,2  ni   

i

ii

iii

i

ii

i

ii

iii
q

qf
qJ

q

qf

q

qh
qJ























 )(
)(

)()(
)(

1

11,1

1

1

11

,
                                                                    

(19) 

i

i
iii

q

qh
qJ






)(
)(,  is assumed to be non-zero in a neighborhood of pq  . It then follows by 

induction that 0)(, iii qJ  in a neighborhood of pq   if and only if 

0
)(1










pqi

ii

q

qf
     1,,3,2  ni                                                                                            

(20) 

From eqs.(7) we see that 0)(1,1 qJ  and 0)(, qJ nn
. By noting from eqs.(3), (7) and (19), we 

have the following equation that 

0
)(

)2sin()(

01

1

01

1














i
ii

ii

i
i

ii

p

k

q

qf





                                                                                 

(21) 

Inverse Function Theorem guarantees there is a smooth inverse map: 

11:)(   nn IRIRzh  

which maps chained form space into the state space if and only if 0i .  From eqs.(7) it can be 

easily checked that the transformation eqs.(4) is diffeomorfic since  
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3.4 Prototyping of Nonholonomic Manipulator 

Obviously, the configuration of the nonholonomic manipulator in section 3 has 1n  

dimensions, which are determined by angular displacement i )3,2( ni   of joint and the angular 

velocity 1n  of disk B in the joint n-1. This multi-joint manipulator is a kind of nonholonomic 

manipulator, which not only has nonholonomy and controllability but also can be converted into 

chained form and guarantee diffeomorphic mapping for conversion. Fig. 3 shows the structural 

diagram of the prototype: three joints nonholonomic manipulator with two actuators. Thus, as long 

as it follows the control algorithm given by motion planning of chained form, the manipulator can 

reach desired position with velocity inputs of two actuators over the time period. 

 

Fig. 3. Structural Diagram of Three Joints Nonholonomic Manipulator 

 

4. Steering Nonholonomic Manipulator 

4.1 Conversion into Chained Form 

The nonholonomic manipulator is designed to convert into chained form and achieve control 

simplicity, although a little complication should be added to mechanical structures. The advantage 

of mathematical properties of kinematic model for nonholonomic manipulator is to satisfy 

conditions of chained form conversion. By setting the general coordinate for three joints 

nonholonomic manipulator mentioned section 3.3. the kinematic model with generalized 

coordinates TTqqqqq ],,,[],,,[ 32121111   in eq.(21) is valid in the subspace 

)2/,0()0,2/(  i
. From theorem 1, nonlinear coordinate transformation and input 

feedback transformation of kinematics model of three joints nonholonomic manipulator can be 

expressed as follows (see [13] for details): 
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4.2 Motion Planning 

Nonholonomic control theory approaches are based on differential geometric framework for 

general nonholonomic systems. Murray and Sastry named a simple nonlinear system the chained 

form and proposed to use it as a canonical form for a class of driftless systems [12]. Many open 

loop controllers have been proposed for the driftless nonholonomic systems [14-15]. 

There are two major control schemes for chained form. One is open loop control, the other is 

feedback control. A major advantage of open loop control is that solutions for practical applications 

with low computational cost can be provided. Furthermore, chained form of feedback control has 

two drawbacks: one is that stabilizing chained system to the nonzero configuration is extremely 

difficult in practice, another is that obstacle or singularity avoidance problem cannot be solved 

some form of feedback control because of no specified extent of overshoot [16, 17] 

There are many existing open loop controllers for the chained form, such as sinusoidal inputs, 

time polynomials inputs and piecewise constant inputs. Any of the control laws can be applied to 

control the nonholonomic manipulator. Time polynomial inputs are applied since inputs are easily 

obtained by solving simple algebraic equations. The control laws equation for three joints 

nonholonomic manipulator are given as follows: 
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This approach has advantage of a constant input on 1v  with the added simplicity of 

computational costs on 2v . However, one of the important things that must be considered is 

coordinate transformation singularities. Although the control law polynomial inputs can steer 

control variables z  to their desired configuration, there is no guarantee that this path, when mapped 

back into the state variables q , will avoid the transformation singularities. That means we must 
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check every path and ensure the existence of every variable in state space. If a singularity does 

really happen, some measures should be taken to find a valid path. The eq.(21) shows that 

transformation singularity happens at 0i . The singularity in state space can be considered as 

obstacle. In order to solve an obstacle avoidance problem, the resultant path should remain the 

collision-free space. Singularity avoidance is enlightened from parking of car, the motion planning 

is established as follows. 

Step 1 The boundary value )0(z  and )(Tz  of chained form can be obtained by initial 

configuration )0(q  and desired configuration )(Tq  from eqs.(23). 

Step 2 The open loop controller, time polynomials inputs, are applied to steer control variables 

)(tzi  form )0(z  to )(Tz  over the finite time T  in the first coordinate, then the coefficient 0b  is 
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Step 3 Once T  has been determined, the eqs.(25) can be integrated using the initial condition 
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Step 4 Desired values )(Tz  is taken into the following equation, and the other coefficients can 

be calculated 
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M can be always made nonsingular if and only if )()0( 11 Tzz  . It is worth noting that if 

)()0( 11 Tzz  , the coefficients will fail to yield a solution. The solution is that the path is divided 

into two parts. The first path steers state variable )(1 tz  from initial position )0(1z  to intermediate 

position )(1 z ( )()0( 11 zz  ); the second path is from )(1 z  to desired position )(1 Tz . An offset 

value from the initial position can be chosen as follows: 

offsetzz  )0()( 11   

n

z
offset

n

i
i

 1  

Step 5 The path is dealt with by establishing constraint points in order to ensure the range of 

)( ci tz  value when it is found to pass through singularities. Eqs.(25) is integrated using the initial 

condition )0(iz  and ct  instead of T . 
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where ],0[],[ Tttt sjsic  , sit  and sjt  represent boundary value at the time of entering and 

leaving singularities ，  respectively. The degree of polynomials and the number of the 

undetermined coefficients of 2v  expression in eqs.(25) will be increased with the increase of the 

numbers of constraint points. For example, 2v  in eqs.(25) expression will be quartic polynomial for 

three joints nonholonomic manipulator with two constraint points.  

4.3 Simulation and Experimental Results 

In simulation, boundary value is given as 
T

q ]1,1,1[)0(  , TTq ]30,30,30[)(   in the state 

space, which corresponds to 
T13,0.0175].0324,0.710-[)0( z  , 

T236]0.4622,0.5,532.0[)( Tz  in chained form space. Fig.5 indicates the trajectory of Z  

without any constraint points. Although control parameter Z can move to setting values )(Tz , )(2 tz  

path in Fig.5 has two zero crossings against the conditions of keeping negative. The inverse chained 

form transformation singularities happen in interval between two zero crossings, as shown in Fig.5 

cyan marker of )(2 tz  trajectory. Fig.5 indicates a constraint point (5,-0.2) is chosen in the 

coordinate system. The boundary value of control parameter Z is re-defined as 
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T,-0.0324]113,0.01750.0324,0.7- [)0( z  and 
T236,-0.2]0.4622,0.5,532.0[)( Tz . It 

can be seen that )(2 tz  can still move to target values )(Tz  smoothly and avoid the singularities. 

The joints and actuator paths are computed. In Fig.6, three joints angular displacement 

( 1 , 2 , 3 ) versus time is plotted. It is clarity that the joint angles can reach the desired 

configuration smoothly without singularities. Fig.7 illustrates input angular ( 1u , 2u ) velocity of two 

actuators. The three joints nonholonomic manipulator motion in IR2 is presented in Fig.8. The 

length of each connecting rob is set to 1(unit length). It’s clear that the motion is quite smooth and 

continuous. 
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Fig.4. Control parameters z  versus time          Fig.5. Control parameters z  with one constraint 

point versus time 
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  Fig.6. Joint Angles Displacement (Simulation)        Fig.7.  Input Angular Velocity (Simulation)    
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Fig.8. Three Nonholonomic Manipulator Motion in IR2 

The time polynomials control law with constraint point method is experimentally tested with 

prototype of the three joints nonholonomic manipulator. Fig.10 illustrates actual input velocity of 

two servo motors, and it matches well with Fig.7. It is obvious that the velocity of two motors is 

precisely controlled. Fig.9 shows experimental results of joints trajectories.  
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Fig.9. Joint Angles Displacement (Experiment)     Fig.10. Input Angular Velocity (Experiment) 

The index of error of the joint angular displacement is defined as follows: 

)3,2,1,max( ,,  ieeE diri                                                                                         (29) 

where ri,  is experimental data of joint angular displacement, di,  is a desired value. There is 

existence of 5 degree error on the 3 curve of Fig.9. The backlash at the bevel gear, the low stiffness 

of the long shaft, transmission parts with low resolution and the lack of drive torque under 

guaranteeing rolling without slipping condition would have caused the error. 
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5. Conclusion and Further Works 

In this paper, we present the multi-joint nonholonomic manipulator which is designed from the 

viewpoint of kinematics and velocity constraints. The kinmatic model is designed focusing on 

meeting driftless nonholonomic constraint with triangular structure which can be converted chained 

form. Based on motion planning simulation and experimental results by use of prototype of three 

joints c manipulator, the validity and usefulness of the nonholonomic system design method. 

Although the motion planning scheme in the previous section shows satisfactory results, actual 

motion performances are greatly affected by various error. For example, the path will be very 

difference when input control   changes slightly. Reducing the sensitivity of input control parameter 

is following work. 
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