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Abstract  

The ionized fluid flow on impulsive vertical plate in porous media in the presence of internal 

heat generation with chemical reaction, thermal radiation and inclined magnetic field has been 

studied numerically for small magnetic Reynolds number. To obtain the non-dimensional non-

similar momentum, energy and concentration equations, usual non-dimensional variables have been 

used. The obtained non-dimensional equations have been solved by explicit finite difference 

method as well as implicit finite difference method. The effects of the various parameters entering 

into the problem on the velocity, temperature and concentration profiles are shown graphically. 

Finally, a qualitative comparison with previous work is shown in tabular form. 
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1. Introduction 

The ionized fluid flow on MHD boundary layer flow has become important in several 

industrial, scientific and engineering fields. For ionized fluid two distinct effects have been 

considered by Cowling [1]. First effect, electric currents can flow in an ionized fluid because of 

relative diffusion of the ionized gas and electrons, due to agencies of electric forces. The second 

effect depends wholly on the magnetic field. The convection flow is often encountered in nuclear 

reactors or in the study of planets and stars. In this flow the phenomenon of mass transfer is also 

very common in the theories of stellar structure. The studies of MHD incompressible viscous flows 

with Hall currents have grown considerably because of its engineering applications to the problems 
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of Hall accelerators, MHD generators, constructions of turbines and centrifugal machines, as well as 

flight magnetohydrodynamics. From the above point of applications, the effects of Hall currents on 

free convective flow through a porous medium bounded by an infinite vertical plate have been 

studied by Ram [2], when a strong magnetic field is imposed in a direction which is perpendicular 

to the free stream and makes an angle to the vertical direction. The Hall effects on an unsteady 

MHD free convective heat and mass transfer flow through a porous medium near an infinite vertical 

porous plate with constant heat flux and variable suction have been analyzed by Sattar and Alam 

[3]. 

The momentum, heat, and mass transport on stretching sheet have several applications in 

polymer processing as well as in electrochemistry. The growing need for chemical reactions in 

chemical and hydrometallurgical industries requires the study of heat and mass transfer with 

chemical reaction. There are many transport processes that are governed by the combined action of 

buoyancy forces due to both thermal and mass diffusion in the presence of the chemical reaction. 

These processes are observed in nuclear reactor safety and combustion systems, solar collectors, as 

well as metallurgical and chemical engineering. Their other applications include solidification of 

binary alloys and crystal growth dispersion of dissolved materials or particulate water in flows, 

drying and dehydration operations in chemical and food processing plants, and combustion of 

atomized liquid fuels. The presence of foreign mass in water or air causes some kind of chemical 

reaction. Some foreign mass may be present either by itself or as mixtures with air or water. In 

many chemical engineering processes, a chemical reaction accurs between a foreign mass and the 

fluid in which the plate is moving. These processes take place in numerous industrial applications, 

for example, polymer production, manufacturing of ceramics or glassware, and food processing. 

From the point of applications, the effect of the first-order homogeneous chemical reaction of an 

unsteady flow past a vertical plate with the constant heat and mass transfer has been investigated by 

Das et al. [4]. The chemical reaction effects on an unsteady MHD free convection fluid flow past a 

semi infinite vertical plate embedded in a porous medium with heat absorption have been studied by 

Anand Rao et al. [5].  

The heat and mass transfer occur simultaneously between the fluxes, the driving potentials are 

of more intricate nature. An energy flux can be generated not only by temperature gradients but by 

composition gradients. The energy flux caused by a composition is called Dufour or diffusion-

thermo effect. Temperature gradients can also create mass fluxes, and this is the Soret or thermal-

diffusion effect. Generally, the thermal-diffusion and the diffusion thermo effects are of smaller-

order magnitude than the effects prescribed by Fourierôs or Fickôs laws and are often neglected in 
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heat and mass transfer processes. The thermal-diffusion effect, for instance, has been utilized for 

isotope separation and in mixture between gases with very light molecular weight (H2,He) and of 

medium molecular weight (Nitrogen-air) the diffusion-thermo effect was found to be of a 

magnitude such that it cannot be neglected. The boundary layer-flows in the presence of Soret, and 

Dufour effects associated with the thermal diffusion and diffusion-thermo for the mixed convection 

have been analyzed by Kafoussias and Williams [6]. The Dufour and Soret effects on unsteady 

MHD free convection and mass transfer flow through a porous medium past an infinite vertical 

porous plate in a rotating system have been studied by Islam and Alam [7].  

The interaction of buoyancy with thermal radiation has been increased greatly during the last 

decade due to its importance in many practical applications. The thermal radiation effect is 

important under many isothermal and nonisothermal situations. For industrial applications such as 

glass production, furnace design, space technology applications, cosmical flight aerodynamics 

rockets, and spacecraft re-entry aerothermodynamics which are operated under the higher 

temperature with radiation effects are significant. In view of this, the unsteady free convection 

interaction with thermal radiation in a boundary layer flow past a vertical porous plate has been 

investigated by Sattar and Kalim [8]. The above work has been investigated by Aydin and Kaya [9] 

with the extension of MHD mixed convection flow about a permeable vertical plate.  

The Soret and Dufour effects have been found to influence the flow field in mixed convection 

boundary layer over a vertical surface embedded in a porous medium. The effect of thermal 

radiation, Hall currents, Soret and Dufour on MHD flow by mixed convection over a vertical 

surface in porous media has been studied by Shateyi et al. [10]. The effects of Soret, Dufour, 

chemical reaction, thermal radiation and volumetric heat generation/absorption on mixed 

convection stagnation point flow on an isothermal vertical plate in porous media has been analyzed 

by Olanrewaju and Gbadeyan [11]. The Micropolar fluid behaviors on unsteady MHD heat and 

mass transfer flow with constant heat and mass fluxes, joule heating and viscous dissipation has 

been investigated by Haque and Alam [12]. The effects of Soret and Dufour on unsteady MHD flow 

by mixed convection over a vertical surface in porous media with internal heat generation, chemical 

reaction and Hall current have been investigated by Aurangzaib and Shafie [13]. The finite 

difference solution of MHD mixed convection flow with heat generation and chemical reaction has 

been studied by Ahmed and Alam [14]. The effects of diffusion-thermo and thermal-diffusion on 

MHD visco-elastic fluid flow over a vertical plate have been investigated by Yasmin et al. [15] by 

using finite difference method. The chemically reacting ionized fluid flow through a vertical plate 

with inclined magnetic field in rotating system has been studied by Ahmed and Alam [16] by using 
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finite difference method. The finite difference solution of radiative MHD heat and mass transfer 

nanofluid flow past a horizontal plate in a rotating system has been investigated by Hasan et al. 

[17].  

Hence our aim of this research is to extend the work of Ahmed and Alam [14]. The problem 

has been solved by finite difference method. The governing equations involved in this problem have 

been transformed into non-similar coupled partial differential equation by usual transformations. 

Finally, the comparison of the present results with the results of Aurangzaib and Shafie [13] has 

been shown graphically as well as tabular form. 

 

2. Mathematical Formulation 

A fl ow model of unsteady MHD mixed convective heat and mass transfer flow of an 

electrically conducting incompressible viscous fluid past an electrically nonconducting isothermal 

semi-infinite vertical porous plate with thermal diffusion and diffusion thermo effect are 

considered. The positive x  coordinate is measured along the plate in the direction of fluid motion 

and the positive y  coordinate is measured normal to the plate. The leading edge of the plate is 

taken as coincident with -z axis. Initially, it is considered that the plate as well as the fluid is at the 

same temperature ( )¤=TT  and concentration level ( )¤=CC . Also it is assumed that the fluid and 

the plate is at rest after that the plate is to be moving with a constant velocity ¤U  in its own plane. 

Instantaneously at time 0>t , the temperature of the plate and spices concentration are raised to 

( )¤>TTw  and ( )¤>CCw  respectively, which are there after maintained constant, where wT , wC  are 

temperature and spices concentration at the wall  and ¤T , ¤C  are the temperature and concentration 

of the species outside the plate respectively. The physical configuration of the problem is furnished 

in Fig. 1. 
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       Fig.1. Geometrical configuration and coordinate system 

A strong uniform magnetic field H  can be taken as ( )02

0 1,,0 HH ll -  where al cos=  is 

applied in a direction that makes an angle a with the normal to the considered plate. Thus if 1=l  

the imposed magnetic field is parallel to the -y axis and if 0=l  then the magnetic field is parallel 

to the plate. The magnetic Reynolds number of the flow is taken to be small enough field and the 

magnetic field is negligible in comparison with applied magnetic field and the magnetic lines are 

fixed relative to the fluid. Using the relation 0=ÖÐ J  for the current density ( )zyx JJJ ,,=J  where 

constant=yJ . Since the plate is non conducting, 0=yJ  at the plate and hence zero everywhere. 

The generalized Ohmôs law in the absence of electric field to the case of short circuit problem 

(Meyer [18] & Cowling [1]); 
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where eie bba +=1  and 
21 lbba eie +=¡   

 

3. Governing Equations 

Within the framework of the above-stated assumptions the generalized equations relevant to 

the unsteady free convective mass transfer problem are governed by the following system of 

coupled partial differential equations as; 
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Energy equation 
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Concentration equation 
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with the corresponding boundary conditions are; 

0yCCTTwUu ww ===== ¤ at,,0,                                (6) 

¤­­­== ¤¤ yCCTTwu as,,0,0       

where wvu and,  are the zyx and,  components of velocity vector, u is the kinematic coefficient 

viscosity, m is the fluid viscosity, r is the density of the fluid, k is the thermal conductivity, pc  is 

the specific heat at the constant pressure , 0k  is the rate of chemical reaction and D  is the 

coefficient of mass diffusivity, tk  is the thermal diffusion ratio, sc  is the concentration 
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susceptibility, respectively. Here p  and q  are considered as positive constant. The radiative heat 

flux rq  is described by the Rosseland approximation such that 
y
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k
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,  where *s  and *k  

are the Stefan-Boltzman constant and the mean absorption coefficient, respectively. If the 

temperature difference within the flow are sufficiently small so that the 4T  can be expressed as a 

linear function after using Taylor series to expand  4T  about the free stream temperature ¤T  and 

neglecting higher-order terms. This result in the following approximation: 434 34 ¤¤ -º TTTT  . 

To obtain the governing equations and the boundary condition in dimension less form, the 

following non-dimensional quantities are introduced as; 
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Substituting the above dimensionless variables in equations (1)-(5) and corresponding 

boundary conditions (6) are; 

0=
µ

µ
+

µ

µ

Y

V

X

U
                    (7) 

( )
( ) KUUW

M
CGTG

Y

U

Y

U
V

X

U
U

U
ee

eee

mr -+
+¡

-++
µ

µ
=

µ

µ
+

µ

µ
+

µ

µ
alb

lbaat 222

2

                            (8) 

( )
( )KWWU

M

Y

W

Y

W
V

X

W
U

W
ee

eee

-¡-
+¡

+
µ

µ
=

µ

µ
+

µ

µ
+

µ

µ
alb

lbaat 222

2

                                              (9) 

2

2

u2

2

r Y

C
D

Y

T

P

R1

Y

T
V

X

T
U

Ű

T

µ

µ
+

µ

µ
öö
÷

õ
ææ
ç

å+
=

µ

µ
+

µ

µ
+

µ

µ
                                                                              

                                             
( )

( ) ( ){ } p

eeee

eee

c TWUUW
ME

balbalb
lbaa

+¡-++
+¡

+
22

222
        (10) 

q

r

c

C
Y

T
S

Y

C

SY

C
V

X

C
U

C
g

t
-

µ

µ
+

µ

µ
=

µ

µ
+

µ

µ
+

µ

µ
2

2

2

21
                                                                               (11) 

boundary conditions are; 

1,1,0,1 ==== CTWU  at 0=Y                                                                                               (12) 

0,0,0,0 ==== CTWU  as ¤­Y ,    

where t represents the dimensionless time, Y  is the dimensionless Cartesian coordinate, U  and W  

are the dimensionless primary velocity and secondary velocity, T  is the dimensionless temperature, 
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C  is the dimensionless concentration, 
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4. Numerical Solutions 

To solve the governing dimensionless partial differential equations with the associated initial 

and boundary conditions, the finite difference method has been used. To obtain the difference 

equations the region of the flow is divided into a grid of lines parallel to X  and Y  axes where X -

axis is taken along the plate and Y -axis is normal to the plate. 

Here the plate of height ( )100max =X  is considered i.e. X  varies from 0  to 100 and assumed 

( )35max =Y  as corresponding to ¤­Y  i.e. Y  varies from 0  to 35. There are ( )200=m  and 

( )200=n  grid spacing in the X  and Y  directions respectively as shown Fig. 2. It is assumed that 

XD , YD  are constant mesh size along X  and Y  directions respectively and taken as follows, 

( )10005.0 ¢¢=D XX  and ( )350175.0 ¢¢=D YY  with the smaller time-step, 005.0=Dt . 

Let CTWU ¡¡¡¡ and,,  denote the values of CTWU and,,  ate the end of a time-step 

respectively. Using the finite difference approximation, the following appropriate set of finite 

difference equations are obtained as; 
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Fig. 2. Finite difference system grid 
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with the boundary conditions, 
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Here the subscript i  and j  designates the grid points with X  and Y  coordinates respectively 

and the superscript n  represents a value of time, tt D=n  where .....,....2,1,0=n . The primary 

velocity ()U , secondary velocity ()W , temperature ()T  and concentration ()C  distributions at all 

interior nodal points may be computed by successive applications of the above finite difference 

equations. The numerical values of the local shear stresses, local Nusselt number and local 

Sherwood number are evaluated by Five-point approximate formula for the derivatives and then the 

average Shear Stress, Current density, Nusselt number and Sherwood number are calculated by the 

use of the Simpsonôs 
3

1
 integration formula. The stability conditions and the convergence criteria 

are not shown for brevity. 

 

5. Results and Discussion 

In order to investigate the physical situation of the problem, the numerical values and graphs of 

primary velocity ()U , secondary velocity ()W , temperature ()T  and concentration ()C  

distributions within the boundary layer have been computed for different values Suction parameter 

()S , Permeability of the porous medium ()K , Magnetic parameter ( )M , Hall parameter ( )eb , Ion-

slip parameter ()ib , Radiation parameter ()R , Prandtl number ()rP , Dufour number ( )uD , Eckert 

Number ( )cE , Heat Generation or Absorption parameter ()b , Schmidt number ( )cS , Soret number 

( )rS , Chemical reaction parameter ()g with the help of a computer programming language Compaq 

Visual Fortran 6.6a and Tecplot 7. These computed numerical results have been shown graphically. 

To obtain the steady-state solutions, the computation has been carried out up to 80=t . It is 

observed that the numerical values of CTWU and,,  however, show little changes after 50=t . 

Hence at 50=t , the solutions of all variables are steady-state solutions.  

To observe the physical situation of the problem, the steady-state solutions have been 

illustrated in Figs. 4-28 when 2=p  and 2=q . The primary velocities, secondary velocities and 

temperature distributions have been displayed for various values of Radiation parameter ()R  and 

Dufour number ( )uD  respectively illustrated in Figs. 4-6. These results show that the primary 
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velocities, secondary velocities and temperature distributions increase with the increase of Radiation 

parameter and Dufour number. The effects of Magnetic parameter ( )M  on primary and secondary 

velocities have been respectively illustrated in Figs. 7 and 8. These results show that the primary 

velocities decrease and secondary velocities increase with the increase of Magnetic parameter. The 

primary velocities have been displayed for various values of Eckert number ( )cE  in Fig. 9. These 

results show that the primary velocities increase with the increase of Eckert number. 

 

 

 

Fig. 4. Illustration of primary velocity profiles 

for various values of Radiation parameter,R  

and Dufour number, uD . 

 Fig. 5. Illustration of secondary velocity 

profiles for various values of Radiation 

parameter,R  and Dufour number, uD . 

 

 

 

Fig. 6. Illustration of temperature profiles 

for various values of Radiation parameter, R  

and Dufour number, uD . 

 Fig. 7. Illustration of primary velocity 

profiles for various values of Magnetic 

parameter, M . 
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Fig. 8. Illustration of secondary velocity 

profiles for various values of Magnetic 

parameter, M . 

 Fig. 9. Illustration of primary velocity 

profiles for various values of Eckert 

number, cE . 

The secondary velocities and temperature distributions have been displayed for various values 

of Eckert number ( )cE  respectively illustrated in Figs. 10 and 11. These results show that the 

secondary velocities and temperature distributions increase with the increase of Eckert number. The 

primary velocities and secondary velocities have been shown in Figs. 12 and 13 for various values 

of chemical reaction parameter ()g with two values of Schimdt number 60.0=cS  (water vapor) 

and 94.0=cS  (carbon dioxide) respectively. It is noted that the primary velocities and secondary 

velocities decrease with the increase of chemical reaction parameter ()g, where 0<g  and 0>g  are 

treated as genarative and destructive chemical reaction respectively. The primary velocities and 

secondary velocities also decrease with the increase of Schimdt number leads to thining of the 

concentration boundary layers. 
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Fig. 10. Illustration of secondary velocity 

profiles for various values of Eckert number, 

cE . 

 Fig. 11. Illustration of temperature profiles 

for various values of Eckert number, cE . 

 

 

 

Fig. 12. Illustration of primary velocity 

profiles for various values of Schimit 

number, cS  and Chemical reaction 

parameter, g. 

 Fig. 13. Illustration of secondary velocity 

profiles for various values of Schimit 

number, cS  and Chemical reaction 

parameter, g. 

The concentrations profiles have been shown in Fig. 14 for various values of chemical reaction 

parameter ()g with two values of Schimdt number 60.0=cS  (water vapor) and 94.0=cS  (carbon 

dioxide) respectively. It is noted that the fluid concentrations decrease with the increase of chemical 

reaction parameter and Schimdt number leads to thining of the concentration boundary layers. Figs. 

15-17 display the primary velocities, secondary velocities and temperature distributions for several 

values of heat generation or absorption parameter ()b  and Prandtl number ()rP . It is noted that the 
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primary velocities, secondary velocities and fluid temperature increase with the increase of heat 

generation or absorption parameter ()b . The primary velocities, secondary velocities and fluid 

temperautre decrease with the increase of Prandtl number. This is consistent with the well known 

fact that the thermal boundary layer thickness decreases with the increase of Prandlt number.     

 

 

 

Fig. 14. Illustration of concentration profiles 

for various values of Schimit number,  

and Chemical reaction parameter, . 

 Fig. 15. Illustration of primary velocity 

profiles for various values of Prandtl 

number,  and Heat genaration or 

absorption parameter, . 

 

 

 

Fig. 16. Illustration of secondary velocity 

profiles for various values of Prandtl 

number,  and Heat genaration or 

absorption parameter, . 

 Fig. 17. Illustration of temperature profiles 

for various values of Prandtl number,  

and Heat genaration or absorption 

parameter, . 


