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Abstract : The ionized micropolar fluid flow with heat and mass transfer over a vertical 

plate under the action of transverse magnetic field has been investigated numerically for the case 

of small magnetic Reynolds number. To obtain the non-similar non-dimensional momentum, 

energy and concentration equations, the usual non-dimensional transformations have been used. 

The obtained equations are solved numerically by explicit finite deference method. The effects of 

various parameters on primary and secondary velocities, angular velocity, temperature and 

concentration as well as local and average shear stresses, Couple stress, Nusselt number and 

Sherwood number are shown in graphically. Finally, a qualitative comparison with previous work 

has been tabulated. 
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1. Introduction 
Partially ionized plasma is usually described by a single-fluid particle approach, where the 

ion-neutral collision effects are expressed by Cowling (1957) conductivity in the induction 

equation. In the course of this decade, efforts have been made to extend the Magnetomicropolar 

phenomena subject to an external magnetic field.  Micropolar fluids are fluids with 

microstructure belonging to a class of fluids with nonsymmetrical stress tensor referred to as 

polar fluids. Physically, they represent fluids consisting of randomly oriented particles suspended 

in a viscous medium, and they are important to engineers and scientists working with 

hydrodynamic-fluid problems. Micropolar Fluids is an essential resource for anyone wishing to 
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understand and needing to use concepts and methods when working with the hydrodynamics of 

miropolar fluids. The magnetohydrodynamic flow between two parallel plates, known as 

Hartmann flow, is a classical problem that has many applications in MHD power generators, 

MHD pumps, accelerators, aerodynamic heating, electrostatic precipitation, polymer technology, 

petroleum industry, purification of crude oil and fluid droplets and sprays. A lot of research 

works concerning the Hartmann flow have been obtained under different physical effects. In most 

cases the Hall and Ion-slip terms were ignored in applying OhmÕs law as they have no marked 

effect for small and moderate values of the magnetic field. However, the current trend for the 

application of MHD is towards a strong magnetic field, so that the influence of electromagnetic 

force is noticeable. Under these conditions, the Hall current and Ion-slip are important and they 

have a marked effect on the magnitude and direction of the current density and consequently on 

the magnetic force term. Free convection flows are studied because of their wide applications and 

hence it has attracted the attention of numerous investigators. Literature on heat and mass flux 

with ion-slip currents are very extensive due to its technical importance in the scientific 

community. When the conducting fluid is partially ionized-gas i.e. water gas seeds with 

potassium, the Hall and Ion-slip current are also significant. Sattar and Alam (1994) presented 

unsteady free convection and mass transfer flow of a viscous, incompressible and electrically 

conducting fluid past a moving infinite vertical porous plate with thermal diffusion effect. 

The heat transfer problem associated with the boundary layer saturated fluid under different 

physical conditions has been studied by several authors. The diffusion of a chemical reactive 

species from a stretching sheet has been considered by Takhar et al. (2002). 

The effects of Hall and Ion-slip currents on free convective heat generating flow in a rotating 

fluid have been studied by Ram (1995). It has been analyzed by Mittal and Bhat (1979) that 

discussed the forced convective heat transfer in a MHD channel with Hall and Ion-slip currents. 

Desseaux and Kelson (2000) studied the flow of a micropolar fluid bounded by a stretching sheet. 

In all the above studies, the authors took the stretching sheet to be oriented in horizontal 

direction. Abo-Eldahab, and Ghonaim (2003) investigated convective heat transfer in an 

electrically conducting micropolar fluid at a stretching surface with uniform free stream.  The 
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Micropolar fluid behaviours on unsteady MHD heat and mass transfer flow with constant heat 

and mass fluxes with joule heating and viscous dissipation has been studied by Haque and Alam 

(2011). The effects of Hall and Ion-slip currents on free convective heat transfer flow past a 

vertical plate have been investigated by Ferdows et al. (2011). 

The effects of chemical reaction, Hall and ion-slip currents on the MHD flow of a 

micropolar fluid through a porous medium have been analyzed by Mosta and Shateyi  (2011) 

using the successive linearization method.  

The objective of this study is to extend the work of Mosta and Shateyi  (2011) with MHD 

forced convection heat and mass transfer fluid flow over a vertical plate. The problem has been 

solved by explicit finite difference method. The governing equations involved in this problem 

have been transformed into non-similar coupled partial differential equation by usual 

transformations. Finally, the comparison of the present results with the results of Mosta and 

Shateyi  (2011) has been shown in tabular form. 

 

2. Mathematical Formulation 

Consider an unsteady MHD electrically conducting incompressible viscous micropolar fluid 

flow past over a vertical electrically nonconducting isothermal plate in the presence of traverse 

magnetic field 0B  in vector form ( )0,,0 0B=B . The fluid flow is also assumed to be in the x  -

direction which is taken along the plate in the upward direction and y  -axis is normal to it. 

Initially the fluid as well as the plate is at rest and it is considered that the plate as well as the 

fluid is at the same temperature ( )!=TT  and concentration level ( )!= CC . Also it is assumed that 

the temperature of the plate and spices concentration are raised to ( )!>TTw  and ( )!>CCw  

respectively, which are there after maintained constant, where wT , wC  are temperature and spices 

concentration at the wall  and !T , !C  are the temperature and concentration of the species outside 

the plate respectively. The physical configuration of the problem is furnished in Fig. 1.  
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Fig. 1. Physical configuration and coordinate system. 

The magnetic Reynolds number of the flow is taken to be small enough field and the 

magnetic field is negligible in comparison with applied magnetic field and the magnetic lines are 

fixed relative to the fluid. Using the relation 0=!" J  for the current density ( )zyx JJJ ,,=J  

where constant=yJ . Since the plate is non-conducting, 0=yJ  at the plate and hence zero 

everywhere. The generalized OhmÕs law in the absence of electric field to the case of short circuit 

problem (T. G. Cowling (1956));  
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The above mentioned framework generalized under the usual boundary layer approximation, 

the governing equation in two dimensional systems under consideration can be written as: 

Continuity equation; 
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Angular Momentum; 
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Energy equation; 
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Concentration equation; 
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with the corresponding boundary conditions are; 

,
y
u

-S0,Nu=0,v=0,w=
!
!

= 0yCCTT ww === at,                                                                (7) 

0,0,0,0,0,0 !!==== CTNwvu  as !"y  

where wvu and,  are the , andx y z components of velocity vector, !  is the electric 

conductivity, !  is the kinematic coefficient viscosity, !  is the density of the fluid, !  is the 

thermal conductivity, pc  is the specific heat at the constant pressure , D  is the coefficient of 

mass diffusivity, T!  is the co-efficient of volumetric expansion for heat transfer, C!  is the co-

efficient of volumetric expansion for mass transfer, respectively. And s be an arbitrary constant. 

When 0s = , it has been found that 0,N ! which represents no-spin condition i.e., the 

microelements in a concentrated particle flow close to the wall are not able to rotate. The case 

1
s

2
! represents vanishing of the anti-symmetric part of the stress tensor and represents weak 

concentration. In a fine particle suspension of the particle spin is equal to the fluid velocity at the 

wall. The case s=1 represents turbulent boundary layer flow. 
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To obtain the governing equations and the boundary condition in dimension less form, the 

following no-dimensional quantities are introduced as;  
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Using the above non-dimensional variables in equations (1)-(6) and corresponding boundary 

conditions (6), the following equations are obtained as: 
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boundary conditions are; 
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 1!0,"0,#0,WV0,U !!==== ,0 as !"Y  

where !  represents the dimensionless time, YX and  are the dimensionless Cartesian 

coordinates, U and V  is the dimensionless velocity component in X  and Z  direction, !  is the 

dimensionless temperature, !  is the dimensionless concentration, 
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(Vortex Viscosity),
 !

"#c
P p

r = (Prandlt Number), 
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3. Shear Stresses, Couple Stresses, Nusselt Number and Sherwood Number 

All The quantities of chief physical interest are shear stresses, couple stress, Nusselt number 

and Sherwood number. The following equations represent the local and average shear stresses at 

the plate local stress in x -direction, 
0

0

=
!!
"

#
$$
%

&

'
'

=
y

xL y
u

µ(  and average shear stress in x -direction, 

!
=

""
#

$
%%
&

'

(
(

= dx
y
u

y

xA

0

0µ)  which are proportional to 
0=

!
"

#
$
%

&
'
'

YY
U

 and !
=

"
#

$
%
&

'
(
(100

0 0

dX
Y
U

Y

 respectively. The 

local Shear stress in z -direction, 
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From the Microrotation field, it has been investigated that the effects of various parameters on the 

local and average couple stress. The following equations represent the local and average couple 

stress at the wall, local couple stress 
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From the temperature field, it has been investigated the effects of various parameters on the local 

and average heat transfer coefficients. The following equations represent the local and average 

heat transfer rate that is well known Nusselt number, local Nusselt number,  
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 respectively. And from the concentration field, the following equations represent 

the local and average mass transfer rate that is well known Sherwood number, local Sherwood 
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number,  
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4. Numerical Technique 

In this paper, the governing coupled non similar non-linear partial differential equations with 

the associated initial and boundary conditions have been solved. From the concept of the above 

discussion, for simplicity the explicit finite difference method has been used to solve equations 

(8)-(13) subject to the conditions given by (14). To obtain the difference equations the region of 

the flow is divided into a grid or mesh of lines parallel to X  and Y  axes where X -axis is taken 

along the plate and Y -axis is normal to the plate. 

Here the plate of height ( )100max =X  is considered i.e. X  varies from 0  to 100 and assumed 

( )25max =Y  as corresponding to !"Y  i.e. Y  varies from 0  to 25. There are ( )100=m  and 

( )100=n  grid spacing in the X  and Y  directions respectively as shown in Fig. 2. It is assumed 

that X! , YΔ  are constant mesh size along X  and Y  directions respectively and taken as 

follows, ( )100000.1 !!=" XX  and ( )25025.0 !!=" YY  with the smaller time-step, 

005.0=! " . 

 

 

Fig. 2. Explicit finite difference grid system. 
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Let !",#,W,V,U !!!!!! and  denote the values of !and!",W,V,U, at the end of a time-

step respectively. Using the explicit finite difference approximation we have an appropriate set 

of finite difference equations, 
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with the boundary conditions;  
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i,L where,  

Here the subscript i  and j  designates the grid points with X  and Y  coordinates 

respectively and the superscript n  represents a value of time, !! "= n  where .....,....2,1,0=n . 
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The primary velocity ( )U , secondary velocity ( )W , Microrotation ( )! , temperature ( )!  and 

concentration ( )!  distributions at all interior nodal points may be computed by successive 

applications of the above finite difference equations. The numerical values of the local shear 

stresses, local couple stress, local Nusselt number and local Sherwood number are evaluated by 

Five-point approximate formula for the derivatives and then the average Shear Stress, Couple 

stress, Nusselt number and Sherwood number are calculated by the use of the SimpsonÕs 
3
1

 

integration formula. The stability conditions and the convergence criteria are not shown for 

brevity. 

 

 

5. Results and Discussion  

For the purpose of observing the Physical significance of the model, the approximate 

solutions are obtained for various parameters with small values of Eckert numbercE . In order to 

analyze the physical situation of the above model has been computed the numerical values of the 

primary velocity U , secondary velocity W , angular velocity ! , temperature !  and 

Concentration !  within the boundary layer for different values of dimensionless magnetic 

parameter ( )M , Grashof number ( )rG , Modified Grashof number ( )*
rG , Prandtl number ( )rP , 

Spin gradient viscosity ( )! ,  Microrotation number ( )! , Vortex viscosity ( )! , Hall current 

( )eβ , ion-slip parameter ( )i! , Schmidt number ( )cS , an arbitrary constant ( )S  and Eckert 

number ( )cE . For Schmidt number ( )cS  the values 00.5,95.0,60.0  are considered, which 

represent specific condition of flow (6.0  corresponds to water vapor that represents the most 

common effect in air, 95.0   belongs to carbon-di-oxide at temperature 025  and 1 atmospheric 

pressure and 00.5  corresponds to highly viscous fluid). To get the steady state solutions, the 

computations have been carried out upto dimensionless time 80=τ . It has been observed that, 

results show visible change for the primary velocity U , secondary velocity W , angular 

velocity ! , temperature !  and Concentration Φ  at dimensionless time 5=!  to 30=τ . But in 

the case of dimensionless time 31=!  to 80 has no visible changes. Thus the solutions for 

dimensionless time  30≥τ   are essentially steady-state. 

The primary velocity U , secondary velocity W , microrotation ! , temperature θ  and 

concentration Φ  profiles have been shown in Figs. 3-22 for different values of 

and*
e i r c c r rM, β , β , P , E , S , Λ, λ, Δ, G , G S  in case of cooling plate. The values of 
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Δλ,,E,β,βM, cie  are however chosen arbitrary. The results have been generalized in several 

cases. The effect of Magnetic parameter M  as well as the different values of time step !  for 

the primary velocity distribution has been represented in Fig. 3. In this figure the maximum 

primary velocity U  reduces near the plate in case of strong magnetic field and then the 

velocity become zero within short range for same values ofM . As compared to !  the 

magnitude of primary velocity increases with the increase of ! . In Fig. 4, the secondary 

velocity continuously increases for the increase ofM  and finally leads to zero asymptotically. 

The effect of M  on the microrotation profile has been shown in Fig. 5. The family of curves 

has a tendency to be twisted. Initially the angular velocity increases for the increase of M  

below the line 0=X . Far away from the plate it has grown up in the upper side of 0=X . 

Spirally the angular velocity begins to decrease with the increasing parameter M  and then 

approaches and enters the line 0=X . Fig. 6 depicts the solution curves of temperature 

increases with the increase of magnetic parameterM . It indicates that the wall receives more 

and more heat from the fluid as the parameter increases. This is due to the plate possessing 

infinite source of heat. But in Fig. 7, the magnitude of concentration profile increases with the 

increase of! as well as increase of magnetic parameter. 

Fig. 8 showed that the secondary velocity increases gradually with the increase of e! and 

obtain a maximum value thereafter the secondary velocity decreases rapidly to meet the 

line 0=X  with the same increasing values of  eβ . The effect of Prandtl number on the 

velocity profiles has been represented in Figs. 9-10. It is observed that U  and W  both are 

reduces due to increasing parameterrP . The usual stabilizing effect of the Prandtl number on 

the boundary layer is also evident in this figure. After a comprehensive survey it has been 

found that the Fig. 11 is given another family of curves for different values of rP  which is 

more similar to the Fig. 5. It is observed from Fig. 11, the angular velocity increases within the 

interval 0 0.4Y! !  (approx.) with the increase of rP , whereas for roughly after 5.0!Y  the 

velocity decreases with the increase of rP . The temperature decreased gradually with the 

increase of rP  and at the steady state it has an increasing tendency within the 

range0 0.3Y! !  as illustrated in Fig. 12. The concentration profile has minor effects due to 

increase of rP . At 30=! , the change appears and it is increasing. But the total concentration 

increases as !  increases illustrated in Fig. 13. 

Figs. 14-15, the primary and secondary velocity increases with the increase of Schmidt 

number cS . From Fig. 16, it has been analyzed that the angular velocity !  has visible effects 
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with the increase of cS . Initially !  decreases near the plate and being spiral they increases for 

the increase of  cS  and meet the line 0=X .In Fig. 17, it is seen that   increase of  cS  leads to an 

increase in concentration profile. This is due to plate possessing infinite source of heat in the 

leading edge. 

On the other hand Fig. 18 has been shown the different flow pattern for angular velocity. It 

has changed its direction twice for the different increasing values of vortex viscosity. The angular 

velocity decreases rapidly near the plate (approx, 25.0!Y ). As time passed the velocity become 

twisted and became maximum. Then it monotonically decreases and entered to the line 0=X  

with the increase of ! . The effect of !  on the angular velocity profile exhibits in Fig. 19. The 

family of curves has a tendency to be twisted. Initially the angular velocity increases for the 

increase of !  below the line 0=X . Far away from the plate it creates a pick in upper side 

of 0=X . After that the prominent velocity begins to decrease with the increasing parameter !  

and finally become zero asymptotically It has been observed from Fig. 20, temperature 

increases faster and then decreases simultaneously with the increase of cE  to meet the line 

0=X . The primary as well as temperature profiles exhibit the remarkable no-change with the 

variations of i!  as observed from Figs. 21 and 22. It is observed that for different values of i! , 

the pick values of velocity shift a little but they have no significant effects on the primary and 

secondary velocity in the xand z! direction. Like before, temperature as no change as is seen in 

Fig. 22. 

 

 

 
Fig.3. Primary velocity profiles for different 
values of Magnetic parameter,M . 

 Fig.4. Secondary Velocity profiles for 
different values of Magnetic parameterM . 



 30 

 

 

 

Fig.5. Microrotation profiles for different 
values of Magnetic parameter M  . 

 Fig.6. Temperature profiles for different 
values of Magnetic parameterM . 

 

 

 
Fig.7. Concentration profiles for different 
values of Magnetic parameterM . 

 Fig.8. Secondary Velocity profiles for 
different values of Hall parametere! . 

 

 

 
Fig.9. Primary velocity profiles for different 
values of Prandtl number rP  

 Fig.10. Secondary velocity profiles for 
different values of Prandtl number rP   
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Fig.11. Microrotation profiles for different 
values of Prandtl number rP  

 Fig.12. Temperature profiles for different 
values of Prandtl number rP . 

 

 

 
Fig.13. Concentration profiles for different 
values of Prandtl number rP  . 

 Fig.14. Primary velocity profiles for 
different values of Schmidt numbercS  . 

 

 

 
Fig.15. Secondary velocity profiles for 
different values of Schmidt numbercS . 

 Fig.16. Microrotation profiles for different 
values of Schmidt numbercS . 
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Fig.17. Concentration profiles for different 
values of Schmidt numbercS . 

 Fig.18. Microrotation profiles for different 
values of Vortex Viscosity! . 

 

 

 
Fig.19. Microrotation profiles for different 
values of Spin Gradient Viscosity! . 

 Fig.20. Temperature profiles for different 
values of dimensionless Eckert numbercE . 

 

 

 
Fig.21. Primary velocity profiles for 
different values of Ion-slip parameter i! . 

 Fig.22. Temperature profiles for different 
values of Ion-slip parameter i! . 
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Conclusions 

Unsteady MHD heat and mass transfer flow of an electrically conducting incompressible viscous 

fluid past a semi-infinite vertical plate under the action of usual magnetic flow for different fluid 

pattern is taken into account. The plate as well as the fluid is considered at the same temperature 

and the concentration label is same. The results are discussed for different values of important 

parameters as Prandtl number, Eckert number, Magnetic parameter, Vortex viscosity, Spin 

gradient Viscosity, Hall current,  and Ion-slip current. The important findings of this model are 

very effective for any kind of change of parameters. The allover investigations considered 

graphically are listed below. 

1. The primary velocity decreases with the increases of rPM, while the secondary velocity 

increases with the increase of ce SM ,, ! . 

2. The secondary velocity decreases with the increase of rP  while the primary velocity 

increases with the increase of cS . 

3. The angular velocity increases with the increase of !&, rPM and the reverse effects found 

for the increase of !&, cc SE . 

4. The temperature profile increases with the increase of cEM, while it decreases with the 

increase of rP . 

5. Concentration distribution increases with the increase of cr SPM ,&, . 

 

The ion-slip parameter gives negligible effects as compared to Hall parameter due to usual 

magnetic field. The stability test is very effective and gives accurate result. 
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Table 1. Qualitative comparison of the present results with the previous results 
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Parameter 

Previous results given by  

S.S.Mosta and S.Shateyi (2011) 

Present results 
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