REFERENCES - [1] Chaudhari CC, Shriram MA, Unhale SG, Nirmal RS. (2017). Fabrication of vortex bladeless windmill power generation model. International Journal of Science Technology & Engineering 3(12): 52-56. - [2] Gohate G, Bobde S, Khairkar A, Jadhav S. (2016). Study of vortex induced vibrations for harvesting energy. International Journal for Innovative Research in Science & Technology 2(11): 374-378. - [3] Pan FF, Xu ZK, Jin L, Pan P, Gao X. (2017). Designed simulation and experiment of a piezoelectric energy harvesting system based on vortex-induced vibration. IEEE Transactions on Industry Applications 53(4): 3890-3897. https://doi.org/10.1109/TIA.2017.2687401 - [4] Pandey AP, Sawla A, Kr. Gupta S, Baredar P. (2016). VIVEC (Vortex Induced Vibration Energy Converter): A new and renewable approach to harness the hydro-kinetic energy of geophysical fluid flow. International Journal Of Advance Research In Science And Engineering 5: 1-20. - [5] Khing TY, Zahari MA, Dol SS. (2015). Application of vortex induced vibration energy generation technologies to the offshore oil and gas platform: The feasibility study. International Journal of Aerospace and Mechanical Engineering 9(4): 661-666. - [6] Song BM, Garner B, Steinbach S. (2010). Design feasibility of a new fluid vortex energy capturing system. IEEE Green Technologies Conference, Grapevine, TX, pp. 1-4. - [7] Kashyap AS, Vidya Shankar KV, Vignesh S. (2010). Renewable energy from vortex induced vibrations in a slow moving fluid. International Conference on Environmental Engineering and Applications, Singapore, pp. 263-266. - [8] Kumar KR, Morab S, Shekar S, Mahalingam A. (2016). Energy harvesting from vortex induced vibrations using vented cylinders mounted on light rail locomotive. 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 268-275. - [9] Mane A, Kharade M, Sonkambale P, Tapase S, Kudte SS. (2017). Design & analysis of vortex bladeless turbine with gyro e-generator. 7th International Conference On - Recent Trends In Engineering, Science & Management, pp. 590-597. - [10] Baidwan KIS, Kumar CRS. (2015). Design of Linear Variable Differential Transformer (LVDT) based displacement sensor with wider linear range characteristics. International Journal of Science & Technoledge 3(4): 74-79. - [11] Saravanan S, Babu NR. (2018). Design and development of single switch high step-up DC–DC converter. IEEE Journal of Emerging and Selected Topics in Power Electronics 6(2): 855-863. - [12] Srivastava P, Singh Sh. SK, Tripathi Sh. N. (2014). Study of fuzzy logic and PID controller in buck-boost converter. International Journal of Scientific Research Engineering & Technology (Ijsret) 3(6): 998-1001. - [13] Bendaoud K, Krit S, Kabrane M, Ouadani H, Elaskri M, Karimi K, Elbousty H, Elmaimouni L. (2017): Implementation of Fuzzy Logic Controller (FLC) for DC-DC boost converter using MATLAB/Simulink. International Journal of Sensors and Sensor Networks 5(5-1): 1-5. - [14] Ganesan R, Vignesh S. (2014). Design and simulation of a fuzzy non linear PI controller for Dc-Dc buck converter for low steady state deviations and its performance comparison with PI controller. International Journal of Innovative Research in Science, Engineering and Technology 3(5): 12695-12701. - [15] Kr Ahuja1 R, Kumar R. (2014). Design and simulation of fuzzy logic controller based switched-mode power supply. International Journal of Electrical Engineering 2(5): 16-21. - [16] Salam Z, Taeed F, Md. Ayob S. (2011). Design and implementation of a single input fuzzy logic controller for boost converters. Journal of Power Electronics 11(4): 542-550. - [17] Ms. Patil BU, Jagtap SR. (2015). Design of fuzzy based controlling system for buck converter. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 4(6): 2730-2733. - [18] Ugale CP, Dhumale RB, Dixit VV. (2015). DC-DC converter using fuzzy logic controller. International Research Journal of Engineering and Technology (IRJET) 2(4): 593-596.