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Abstract 

Difference patterns are often used in tracking radar applications. It is essential to 

generate these patterns with low side lobes to improve target tracking due to 

interference, clutter, jammers etc. Although reduced side lobes can be obtained by 

amplitude only synthesis method, thinning is another technique for the same purpose. It 

brings down the number of active elements in the array without degrading the system 

performance. The objective of the present work is to generate low side lobe difference 

patterns from concentric ring arrays by amplitude only synthesis method along with 

thinning the array at the same time. Thinning not only reduces side lobes but also 

reduces cost and weight. A Differential Evaluation algorithm is employed for obtaining 

optimum array configurations. Results are presented for different arrays of concentric 

rings.  
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1. Introduction 

In target tracking radar systems, difference patterns are employed to locate the 

target with high accuracy [1-2]. Difference patterns have a sharp, deep null in the bore 

sight direction with twin lobes on either side. This deep null is utilized in target 

detection.  When the target is placed exactly in the null between the two principal lobes, 

its angular location can be determined with high accuracy. This is more precise than 

using a sum pattern with broad main beam peak as the null is having a very narrow 
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angular width. Array designs with desired radiation pattern characteristics can be 

generated by careful design [3-4], [5]. 

Concentric ring arrays find many applications in air & space navigation, radio 

direction finding [6]. They are given more concentration as they offer several 

advantages like scan capability in entire 3600 azimuthal plane and a compact antenna 

structure. Moreover owing to the fact that there are no edge elements, these arrays are 

less sensitive to mutual coupling effects.  Most of the earlier works, contributed in the 

field of difference pattern generation from circular arrays, used conventional methods. 

Bayliss [7] developed a two parameter difference pattern with nearly equal side lobes 

similar to those of Taylors sum pattern for a circular aperture antenna. Elliot [8] 

proposed a perturbation technique which modifies the Taylor-type linear and circular 

aperture distributions to generate sum and difference patterns with arbitrary side lobes. 

Hansen [9] presented a synthesis method for linear and circular planar arrays that 

provide pencil beams and difference patterns with variable side lobe level based on 

placement of zeros of the array polynomial. Ares et.al [10] presented a design technique 

to get an aperture distribution for both linear and circular apertures, which yields 

difference patterns with arbitrary side lobe topography.  Elliot [11] reported various 

synthesis techniques for finding excitations that result in desired radiation patterns. The 

techniques are useful for linear and circular array geometries to generate sum and 

difference patterns with lobes characterized by scattered deep nulls. Keizer [12] 

presented a pattern synthesis method which yields low side lobe sum and difference 

patterns from circular and elliptical apertures with periodic arrangement of elements. 

The proposed method is specifically suitable for large planar antenna arrays with ultra 

low side lobe requirements. 

 Thinning is a technique that selectively turns off certain array elements without 

disturbing the system performance. It results in optimum design of arrays with a 

reduction in cost and weight. Moreover, all the elements are excited uniformly which 

requires a simple feed network. Very limited literature is available on generating low 

side lobe difference patterns from thinned concentric circular arrays. Keizer [13] carried 

out synthesis of continuous amplitude tapers for illuminating turned ON elements of 

large thinned circular arrays for generating both sum and difference patterns. Iterative 

Fourier Transform method is employed to synthesize the low side lobe patterns. The 

work done mainly refers to highly thinned circular arrays with large diameters ranging 

from 25 to 133.3 wavelengths.  
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The current work is aimed at generating low sidelobe difference patterns from 

concentric ring arrays using amplitude only synthesis along with array thinning. To the 

author’s knowledge, no such work has been reported earlier. The fill factor is not 

allowed to exceed 55%. Both optimum values satisfying the set criteria are obtained 

using a Differential Evolution Algorithm.  Results are presented for 8 and 10 concentric 

ring arrays. All results are simulated using Matlab software. 

The present work is categorized as follows: Section II describes the working 

principles of Differential Evolution algorithm. Section III gives the problem 

formulation. Results are discussed in section IV. Conclusions are discussed in section 

V. 

2. Differential Evolution 

 DE is a simple population based stochastic search algorithm. It was first 

proposed by [14-15]. It is another evolutionary algorithm which paved way for solving 

complex optimization problems. It is a powerful search technique which is successfully 

applied in many fields like communications, pattern recognition etc. The algorithm 

offers following advantages: 

 It can easily handle non-linear, non-differentiable complex cost functions 

 It has few easy to choose control parameters which influence the convergence of 

the algorithm 

 Good convergence speed in finding optimum value 

The main steps involved in the algorithm are depicted in the following flowchart: 
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Fig. 1. Flowchart for DE 

Step 1: Initialization: The algorithm starts with ‘N’ (at least equal to 4) population 

vectors. The individuals are called target vectors. The total number of these parameter 

vectors remains same throughout the algorithm. Let ‘xi,G’ represent the ith parameter 

vector where i=1, 2… N. ‘G’ is the generation number. The parameter vectors are 

randomly initialized in step 1. 

Step 2: Cost Evaluation: The initial xi,G parameter vectors are evaluated for their cost 

using the objective function. 

Step 3: Mutation: In this step, new parameter vectors are generated by adding weighted 

difference between two target vectors to a third target vector, i.e. for a given target 

vector ‘xi,G’ , select three target vectors xr1,G , xr2,G , xr3,G such that i, r1, r2, r3 are distinct 

to form mutant vectors called ‘donor vectors’.  

 GrGrGrGji xxFxv .,,1, 321
  

here r1, r2, r3{1, 2…, N} 

Mutation expands the solution space. The factor ‘F’ is called mutation factor. Usually it 

is a real constant chosen in the range 0 to 2. 
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Step 4: Crossover: It increases the diversity of parameter vectors by including good 

solutions or vectors from previous generations. It forms the new so called ‘trail vectors 

(ui,G+1)’ by mixing elements of target vector ‘xi,G’, and donor vector ‘vi,G+1’. 

randGjiGji IjorCRrandifvu   1,1,                                                              

            = randGji IjandCRrandifx 1,  

Here i=1,2…N; j=1,2…,D. D is the number of parameters in one vector. Irand is a 

randomly number chosen in the range 1 to D which ensures that ui,G+1 gets at least one 

parameter from vi,G+1. CR is the crossover constant to be taken in the range (0,1). 

Step 5: Selection: It imitates survival-of-the-fittest. It follows greedy scheme and selects 

vectors for next generation. The process is as follows: 

   GiGiGiGi xtutifux ,1,1,1, coscos  
 

                                                                otherwisex Gi,  

That means, the newly generated trial vectors replace parent target vectors if they yield 

lower cost otherwise the parent target vectors are passed on to next generation. 

Step 6: Stopping criteria: Steps 2 to 5 are repeated until some stopping criteria is met. 

Stopping criteria in general may be fixed number of generations or a predetermined 

cost.   

There are different variants of DE as suggested by Storn and Price [14]. In the present 

work, a DE/rand/1/binary scheme is used. 

3. Formulation 

 The geometry of a ‘m’ ring concentric circular array is as shown in 

figure 2. Assume all elements in all rings are isotropic elements. Let rm represent the 

radius of mth ring and let the number of elements present in mth ring be Nm where 

m=1,2,..M. Let dm be the inter element spacing. 
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Fig. 2.Geometry of concentric circular array 

             The generalized array factor for the array [16] is given by  

    
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Here 

M  = number of rings 

Nm = number of elements in ring m 

Amn= Amplitude excitation of nth element of mth ring 

Imn = excitation of nth element of mth ring  =  

rm = radius of ring m 

φmn  = angular position of nth element of mth ring  

 

mN

m 12 



 

(2) 

k=2π/λ 

θ   = elevation angle 

φ = Azimuthal angle 

In ‘u’ domain 
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where  u=sin(θ)   

The radius of mth ring is given by 

rm=mλ/2 (3) 

The inter element spacing is assumed to be approximately  λ/2 i.e.  dm= λ/2  . 
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The number of equally spaced elements present in ring ‘m’ is given by  

Nm=8*m (4) 

All the elements have uniform excitation phase of zero degrees. For attaining the 

difference patterns, half the array must be excited in out of phase. Hence the resultant 

expression for the array factor is given by 

)()()( 21 uEuEuAF   (5) 

where   
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In the above equations, φ is assumed to be constant.  

4. Method of Sidelobe Reduction 

Low sidelobe difference patterns can be generated by nonuniformly exciting the 

elements in each ring. Thinning of the array also reduces the sidelobe levels. In this 

paper, both amplitude tapering and thinning techniques are used. The DE algorithm is 

used to find the optimum amplitude excitations as well as thinning coefficients.  

The objective function which is to be minimized for finding the optimum solution is as 

follows: 

   dOdO FFFFwSLLPSLLwFit  *2*1  (6) 

 

where  
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uAF
PSLLO

max

log20max Obtained Peak Sidelobe level    

u   side lobe region.  

SLLd =Desired Sidelobe level 

AFmax(u)= Main beam peak value 

FFo is the obtained Fill factor, FFd is the desired Fill factor. Fill factor is defined as the 

number of turned on elements divided by total number of elements present. w1 and w2 

are weighing factors for controlling the amount of significance given to each term in 

eq.(6). 

5. Results 
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This section provides various computational results of concentric circular array 

designs obtained using DE algorithm. In the present work, eight and ten ring concentric 

circular arrays are considered. The corresponding optimum amplitude excitations and 

thinning coefficients for generating difference pattern are obtained using eq. (5). Since 

the optimum results depend on the parameters of the algorithm, the control parameters 

must be carefully chosen. The algorithm started with a population size of 12, Crossover 

rate of 0.85, and Mutation factor of 0.7. The algorithm is run for a maximum of 350 

generations. 

An 8 ring concentric circular array is considered initially and the DE optimized 

values are introduced in eq. (5) and the resulting far field radiation pattern is presented 

in fig.3. The resultant pattern has a peak sidelobe level of -22.08dB with 54.166% fill 

factor. The pattern for a fully populated array is also shown for comparison. Uniform 

excitation of the elements gives a peak sidelobe level of -10.92dB for a fully filled 

array. An improvement of 11.16dB can be observed. 
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Fig. 3. Patterns for DE optimized and uniformly excited arrays 

The nonuniform aperture distribution across the elements is presented in fig.4. 

To get the difference pattern, one half of the array is excited out of phase. This is 

presented clearly in fig.5. The ‘+’ sign indicates element excited with zero phase 

whereas a ‘.’ sign indicates element excited out of phase.  
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Fig. 4. Aperture distribution across the array 
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Fig. 5. Half of the array excited out of phase 

The thinned aperture is shown in fig. 6. Turning off 132 elements out of a total 

number of 288 elements, brought down the sidelobe level to -22.08dB. As pointed 

earlier, this lowers the antenna weight and design cost. 
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Fig. 6. Aperture layout of ON elements 

Figures 7, 8, 9 show the optimized far field difference pattern, Amplitude 

distribution and Thinned aperture of a 10 ring concentric circular array. Out of 440 

elements, only 230 elements are excited and remaining 210 elements are turned ‘OFF’. 
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Fig. 7. Patterns for DE optimized and uniformly excited arrays 

A peak SLL of -24.399 dB is obtained with a fill factor of 52.2727%. Fig.7 also 

gives a comparison of radiation patterns from a uniformly excited array with DE 

optimized array. The optimization gives an improvement of 13.7dB over the -10.699dB 

SLL achieved from a fully populated uniformly excited array. 
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Fig. 8. Aperture distribution across the array 
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Fig. 9. Aperture layout of ON elements 

6. Conclusion 
 This paper presents useful array designs for generation of low sidelobe tapered 

difference patterns from concentric circular arrays. It is worth to mention that no work 

has been reported earlier in this regard. Such patterns with low side lobes find wide 

applications in radar target tracking. Amplitude only synthesis and thinning techniques 

are employed for reducing the sidelobe levels. The optimum array configurations are 

derived using Differential Evolution algorithm. The designed configurations have a fill 

factor restricted to a maximum of 55%. Results are presented for 8 and 10 number of 

concentric circular arrays. PSLL of -22.08dB and -24.399dB are attained for 8 ring and 

10 ring concentric circular arrays respectively. The results show good improvement in 

reduction of peak SLL, as the obtained sidelobe levels are atleast 11dB better than those 

attained from uniformly fed fully filled arrays. The work can be extended for thinning 



 

56 
 

arrays of practical elements and arrays of different geometries. G. S. N. Raju (2008), 

“Radar Engineering and Fundamentals of Navigational Aids,” I.K.International 

Publishing House Pvt. Ltd., India. 
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