- [28] Roy R, Jadhav HT. (2015). Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Electrical Power and Energy Systems 64: 562-578.
- [29] Mohamed AAA, Mohamed YS, El-Gaafary AAM, Hemeida AM. (2017). Optimal power flow using moth swarm algorithm. Electric Power Systems Research 142: 190-206.
- [30] Ghasemi M, Ghavidel S, Ghanbarian M. (2015). Multiobjective optimal electric power planning in the power system using Gaussian bare-bones imperialist competitive algorithm. Information Sciences. 294: 286-304. https://doi.org/10.1016/j.ins.2014.09.051
- [31] El-Fergany AA, Hasanien HM. (2015). Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electric Power Components and Systems 43: 1548-1559. https://doi.org/10.1080/15325008.2015.1041625
- [32] Kessel P, Glavitsch H. (1986). Estimating the voltage stability of a power system. IEEE Trans Power Deliv 1: 346-54. https://doi.org/10.1109/TPWRD.1986.4308013
- [33] Zimmerman RD, Murillo-Sánchez CE, Thomas RJ. Matpower http://www.pserc.cornell.edu/matpower

NOMENCLATURE

J(x, u)	Objective function.
h (x, u)	Set of equality constraints.
g(x, u)	Set of inequality constraints.
X	State variables' Vector.

U	Control variables' Vector.
PG	Active power bus generator.
VG	Voltage magnitude at <i>i</i> -th PV bus (generator
	bus).
T	Transformer tap setting.
QC	Shunt VAR compensation.
PG1	Generator active power at slack bus.
VL	Bus voltage of p -th load bus (PQ bus).
QG	Reactive power generation of all generator units.
SL	Transmission line loading (or line flow).
NL and nl	Number of load buses and the number of
	transmission lines.
NC, NT	Number of VAR compensators, the number
and NG	of regulating transformers and the number of generators respectively.
P_{D} and	Active and reactive load demands.
$Q_{\scriptscriptstyle D}$	
$G_{\it ij}$	Transfer conductance
$m{B}_{ij}$	Susceptance between bus i and bus j , respectively.
$V_{L_p}^{ m min}$ and	Lowest and upper load voltage of ith unit.
$V_{L_p}^{\;\; {\sf max}}$	
S_{l_q}	Apparent power flow of ith branch.
$S_{l_q}^{\mathrm{max}}$	Maximum apparent power flow limit of ith branch.