








 

precision begins to slightly yield from r=3. We can conclude 

that there is a really clear improvement of the results by using 

the DFFNN, this improvement is more sensitive on this 

database with regard to the first one. 

From our two-step experiments, we have been able to show 

the superiority of the DFFNNs compared to the graph-based 

methods used in this context. Among the strong points, too, of 

our conduct is that the construction of such a model is very 

feasible also in a massive data context. 

 

Table 8. Average accuracy (second database) 

 
Second database R = 1 R = 2 R = 3 

KNN - 90,58 - 

LLE - 95 - 

TPWRLS - 97,33 - 

DFFNN 99,805 99,965 99,495 

 

 

5. CONCLUSIONS 

 

We have evaluated the DFFNN for the objects 

categorization with the cross-validation scheme that is 

commonly used in the domain of pattern recognition. Objects 

can be captured by either a surveillance camera or an onboard 

camera. In this work, we have presented a quantitative 

evaluation using the DFFNN and some graph-based methods 

schemes, applied, firstly to outdoor object categorization using 

a first public outdoor image dataset, and secondly, to object 

categorization using a second public dataset. From our two-

step experiments, we have been able to show the superiority of 

the DFFNNs compared to the graph-based methods used in 

this context. Among the strong points, too, of our conduct is 

that the construction of such a model is very feasible also in a 

massive data context. It is in our perspective for future 

research to test this architecture with other LBP neighborhood 

types on a real data captured directly from a surveillance 

camera or an onboard camera. 
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