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Abstract: Fuzzy decision tree or Soft Decision Tree (SDT) classifier using interval type-2 fuzzy 

logic rule based data mining for steam turbine fault analysis of a power system rotatory machine 

component is used not only for database analyses, but also for machine learning. The classification 

rules are based on standardized vibration frequency data for steam turbines and field experts’ analyses 

of turbine vibration problems. The system can identify twenty types of standard steam turbine faults. 

The system was developed using 1500 simulated data sets. The data mining methods were then used to 

identify 20 explicit rules for the turbine faults. The results indicate that the fuzzy decision tree 

classifier using interval type-2 fuzzy logic rule based data mining can be effectively applied to 

diagnosis of rotating machinery by giving useful rules to interpret the data. The data mining and 

analysis was implemented between the fault information dimensions table and the relationship rule 

dimensions table. We made sure the causes of the fault and chose the priority solution for 

troubleshooting by generating candidates sets and filtering the candidate set and matching the fault. 

Fuzzy decision trees called soft decision trees (SDT) combines tree growing and pruning, to determine 

the structure of the soft decision tree, with refitting and back fitting, to improve its generalization 

capabilities. Moreover, a global model variance study shows a much lower variance for soft decision 

trees than for standard trees as a direct cause of the improved accuracy. 
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1. Introduction 

Beginning in around 1985, the goal of rotating machinery (here steam turbine) fault 

diagnostics was primarily to store the vibration spectra and to provide graphical tools so that the 

analyst could quickly access the data and determine what might be wrong with the machine. But as 

the data collection devices (originally spectrum analyzers) became smaller, faster, and more 

portable, the amount of data to be analyzed rapidly grew. The data acquisition system could soon 

store hundreds of spectra. As the data acquisition systems and measurement techniques improved, 

the analyst was faced with mountains of data. The overwhelming amount of data resulted in the new 

technique of data mining, which seeks to extract knowledge from huge volumes of data through 

numerical analysis of the data. Data mining is not only database analysis method, but also an 

important machine learning tool. This paper describes Fuzzy decision tree classifier using interval 

type-2 fuzzy logic rule based data mining for steam turbine fault analysis of a power system 

rotatory machine component.  Many methods have been used for data mining, with the decision tree 

(DT) often shown to be the most valuable form of data mining. The most important feature of 

Decision Tree Classifier (DTC) is their capability to break down a complex decision-making 

process into a collection of simpler decisions, thus providing a solution which is often easier to 

interpret. 

Fault diagnosis is based on pattern identification and classification. The first step in steam 

turbine fault diagnostics is pattern identification from the measured data. The next step is to 

interpret what the patterns indicate about the machine, but proper interpretation requires some 

knowledge about the machine. Decision trees provide a good approach to supervised classification 

and prediction in artificial intelligence and statistical pattern recognition. Crupi et al. [2004] 

describe the use of neural networks to evaluate vibration signatures in rotating machinery and 

recognize the occurrence of faults. Decision trees can be more effectively applied to steam turbine 

fault diagnosis because the fault diagnosis requires not only pattern classification, but also rule 

extraction and knowledge interpretation. 

In almost every real-life field one is confronted with growing amounts of data coming from 

measurements, simulations or simply, from manual data registration and centralization procedures, 

and, most often, it would be a waste not to take advantage of these data. Recent developments in 



3	
  

	
  

data storage devices, database management systems, computer technologies and automatic learning 

techniques make data analysis tasks easier and more efficient. In this context, data mining is a 

modern concept beginning to be widely used. The general purpose of data mining is to process the 

information embedded in data so as to develop better ways to handle data and support future 

decision-making. Machine learning, association rules, clustering methods, artificial neural 

networks, fuzzy logic, genetic algorithm, statistical and visualization tools are common techniques 

used in data mining. The perfect data mining technique would simultaneously: be able to manage 

large amounts of data, be accurate, be interpretable and comprehensible, be efficient when training 

and using it, and be a problem-independent tool that manages to automatically extract the most 

relevant features for a given problem and to fix its parameters and its model complexity with 

minimal human intervention. 

In the spirit of solving our-days-needs of learning methods, this paper proposes a method 

called soft decision trees (SDT), i.e. a variant of classical decision tree inductive learning using 

interval type-2 fuzzy logic theory. Soft decision tree techniques have already been shown to be 

interpretable, efficient, problem independent and able to treat large scale applications. Interval type-

2 fuzzy logic brings in an improvement in these aspects due to the elasticity of interval type-2 fuzzy 

sets formalism. The proposed method has been studied in detail and compared with alternative crisp 

methods and the results show a much improved prediction accuracy, explainable by a much reduced 

model variance. Also, more stability at the parameters level leads to better interpretability. 

Steam Turbine Fault Diagnosis Study in Present Situation  

Power system goes wrong in randomness, when each fault i.e. steam turbine fault has been 

taken places, it’s changes in the scope of its parameters have a very strong randomness. There are 

more techniques and methods would be used in steam turbine fault analysis, for example: expert 

systems, causal maps, fuzzy sets, inductive learning, Artificial Neural Networks, wavelet 

transformation, Kalman Filters, etc…,In addition, the Chaos and Fractal Theories already begun to 

attract people’s attention. The steam turbine operating conditions change, transient signal caused by 

fault is a non-stationary random process, and the data mining is to analysis the fault, which based on 

high-frequency transient state component of fault, and which to predict, determine and deal with the 

possible fault, so that we can set up the scheduling plan for reasonable and guarantee the security of 

electricity supply and improve operation efficiency. 

Fault Mode 

Steam turbine in the long-term operation and maintenance has accumulated rich experience 

and a lot of original information, and it is important for enterprises to change these experiences and 

information  
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Table.1. the Structure of Fault Mode Dimensions 
ID Fault properties Description 

1 Fault code The fault of unique identifier 

2 Fault Statistics code Used for statistical analysis, the user can determine the statistical particle size. 

3 Fault Level Fault Level can be divided into mild fault, general fault, a serious fault and a fatal fault 

4 Fault Parent code The structure of fault mode organized by tree, and definite the logical relationship each other 

5 Type of  coding parts Identification of the components correspond to the type of fault mode 

6 Service Time The fault corresponding to the general maintenance service time  

7 Cause of fault The essence reasons for fault 

8 Fault appearance The reasons of the fault corresponds to the appearance of common faults (Fault manifestation) 

 

into knowledge. Fault mode is the genuine cause of the fault which is the appearance summarized 

when the products take place fault. Fault mode is the one of the main target of data mining, the 

appearance of fault are classified and cleaned up to form the fault mode is a valuable resource for 

enterprises. The user's description of fault is often the fault's appearance, and the fault appearance is 

only the outward manifestation of the issue of fault in many cases, the appearance of fault will 

correspond to the fault cause can be cleaned up and analyzed by the experience and relevant 

technical standards and come into a standard dimension table of the fault mode. A typical fault 

mode recorded content as shown in table 1. Among them, the items 1,2,4,7 are the key elements of 

the system and are the basic to deal with the fault information. The data of the fault mode 

dimension table initialization comes from the historical experience of enterprise data; Fault mode 

dimension table can be maintained by automatically and artificial maintenance, the main source of 

information is the user feedback of the new fault appearance. 

 

2. Interval Type-2 Fuzzy Logic Rule Generation for Data Mining Based 

Fault Detection  
Data mining rules 

The knowledge characteristics of diagnosis field and the steam turbine fault mode analysis 

are provided by a variety of technical parameters or experience, it combined with interval type-2 

fuzzy logic methods, production rules based on the uncertain knowledge reasoning were adopted, 

the general form of the rules as follows: Fuzzy Rules: IF P THEN Q, in which P = P1 (C1) AND / 

OR P2 (C2) ... Pn(Cn),   
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P is fault appearance, it could be a simple fault appearance, and also, it could be a logical 

combination by a number of a simple fault appearance, for example,  

P = P1(C1) AND P2 (C2) OR P3 (C3) 

For each fault appearance P1, P2, ..., Pn can be assigned a corresponding confidence value C1, 

C2, ..., Cn, it is the percentage of the credibility of the fault appearance (probability of the fault 

appearance); Q is the real reason for the fault ,and it may be one or more conclusions. A large 

number of valuable knowledge would be found from fault information for production, management 

and for maintenance steam turbine and circuitry to use for reference, so that, the accuracy of fault 

diagnosis is improved and the time of fault remove is shorten. Data mining process in the fault 

information was shown in Fig 1. 

 
Fig.1 The data mining process of trouble information 

 

The main objective of data mining is to use the correlation of the fault information in data 

warehouse in order to find the information which is hidden and divinable and understandably and 

valuable, and to find the model which is easy understand by people to describe the data in the data 

warehouse. The data was collected according to fault model which was cleaned up and a fairly 

standard, it is easy for enterprises to establish knowledge dimension table and the relationship rules 

dimension table, in the data warehouse can be found a large number of knowledge about 

equipment’s performance, operation status, scheduling scheme, the cause of the fault, service 

decision, etc. It can generate many different fault conclusions; it is fit for multi-fault diagnosis of 

intelligent systems.  

First of all, the sequence of the fault dimension table was created in the data warehouse, the 

corresponding ID number was found according to these faults number, and the ID numbers were 

sorted. Then the output results of the Package1 were be converted into numeric, and it kept in the 

computer's memory as hexadecimal number. A "Test Model" was created by the rules of the 

dimension table records, and with the “Fault Model” match, then an ideal frequent item sets and 

candidate frequent item sets were generated. 



6	
  

	
  

We would be carried out with “Fault Model” and “Test Model” computing as the rules of 

data mining were given in previous, the frequent item sets 1 and frequent item sets 2 were 

generated. At last, traversing each records in the rules dimension table, repeat it, the frequent item 

sets 1 and frequent item sets 2 were generated. If the frequent item sets 1 is empty while it replaced 

by the contents of frequent item sets 2, while empty frequent item sets 2. Matching fault mode 

combines with the fuzzy inference rules to filter the dimension. 

Interval Type-2 Fuzzy Logic Systems (IT2FLS) 

Fuzzy Logic Systems (FLS) are known as the universal-approximators and have various 

applications in identification and control designs. A type-1 fuzzy system consists of four major 

parts: fuzzifier, rule base, inference engine and defuzzifier. A type-2 fuzzy system has a similar 

structure, but one of the major differences can be seen in the rule base part, where a type-2 rule base 

has antecedents and consequents using Type-2 Fuzzy Sets (T2FS). In a T2FS, we consider a 

Gaussian function with a known standard deviation, while the mean (m) varies between m1 and m2. 

Therefore, a uniform weighting is assumed to represent a footprint of uncertainty as shaded in Fig.2. 

Because of using such a uniform weighting, we name the T2FS as an Interval Type-2 Fuzzy Set 

(IT2FS). Utilizing a rule base which consists of IT2FSs, the output of the inference engine will also 

be a T2FS and hence we need a type-reducer to convert it to a type-1 fuzzy set before 

defuzzification can be carried out. Fig.3 shows the main structure of type-2 FLS. 

By using singleton fuzzification, the singleton inputs are fed into the inference engine. 

Combining the fuzzy if-then rules, the inference engine maps the singleton input x = [x1, x2,…x3] 

into a type-2 fuzzy set as the output. A typical form of an if-then rule can be written as: 

    (1)      

 
Fig. 2: Interval type 2 fuzzy set (IT2FS) 

 Where Fk are the antecedents (k = 1,2,…,n) and Gi is the consequent of the ith rule. We use 

sup-star method as one of the various inference methods. The first step is to evaluate the firing set 

for ith rule as following:  
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        (2) 

As all of the Fk
s are IT2FSs, so Fi( )  can be written as        

 Where: 
          (3) 

 

         (4) 

The terms  and are the lower and upper membership functions, respectively (Fig.2). In 

the next step, the firing set Fi(x) is combined with the ith consequent using the product t-norm to 

produce the type-2 output fuzzy set. The type-2 output fuzzy sets are then fed into the type 

reduction part. The structure of type reducing part is combined with the defuzzification procedure, 

which uses Center of Sets (COS) method. First, the left and right centroids of each rule consequent 

are computed using Karnik-Mendel (KM) algorithm. Let’s call them yl and yr respectively. 

The firing sets  computed in the inference engine are combined with 

the left and right centroid of consequents and then the defuzzified output is evaluated by finding the 

solutions of following optimization problems: 

     (5) 

     (6) 

Define fl
k( ) and fr

k ( )  as a functions which are used to solve (5) and (6) respectively and 

let      

And      

 

 

 

 

 

 

 

Fig.3: Main structure of interval type-2 FLS 

Then we can write (5) and (6) as: 

      (7) 
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      (8) 

Where 

  

And      are the fuzzy basis functions and 

  

And  are the adjustable parameters. 

  Finally, the crisp value is obtained by  the defuzzification procedure as follows: 

    (9) 

Where 

  and    

  

3. Soft Decision Tree Classifier (Interval Type-2 Fuzzy Logic based Decision 

Tree Classifier)  
Soft decision trees versus crisp regression trees 

We present intuitively the formal representation of a soft decision tree by explaining first the 

regression tree (RT) type of induction. Regression trees and soft decision trees (SDT) are extensions 

of the decision tree  

 
                                   (a). RT                                                       (b). SDT 

Fig.4 Regression tree versus soft decision tree. 

induction technique, predicting a numerical output, rather than a discrete class. Both trees may be 
used in regression problems given their output (numerical by definition), or in classification 
problems, by a priori de4ning symbolic classes on the numerical output. Fig.4 shows a crisp 
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regression tree (left part (a)) and a soft decision tree (right part (b)). Both were built for a steam 
turbine fault diagnosis. The input space is here defined by an attribute characterizing the system 

 
Fig.5 Example of a crisp class and a fuzzy class  

state, denoted respectively by “P” fault appearance. The output is denoted by “Q” real cause of 

fault. We formulated it as an interval type-2 fuzzy class based on a parameter called critical clearing 

time (CCT) of the system state (see Fig.5). The trees predict the membership degree of instances to 

this interval type-2 fuzzy class. In a crisp decision (see Fig.5), the system could be considered 

“unhealthy” if the CCT is smaller than 155ms, “healthy” otherwise (classification problem). In a 

soft decision, there is a transition region of 110 ms (as we defined it) in which the system is 

neither”healthy” nor “unhealthy” (regression problem). 

We may also express the result in a crisp way (see crisp class of Fig.5): since 0.87 ms 

corresponds to a CCT value smaller than 155 ms, the conclusion is that the class estimated by the 

regression tree is “unhealthy”. By translating the tree into a rule base, the rule extracted from the 

tree fired by our instance looks like: 

Rule: If P is .87 ms then Q unhealthy 

Soft decision tree 

The soft decision tree in Fig. 4(b) has also four test nodes and five terminal nodes. Each 

node is also marked with its local estimation of the output. Under each test node, the selected test 

appears as a condition on a single attribute at a time, regarding a pair of two parameters (values in 

brackets). These two parameters characterize the function called discriminator needed to fuzzily 

split the local set of objects of a given current test node. A widely used shape of discriminator 

function is the piecewise linear one (see Fig.6). 

The two parameters defining it are: α, which is the location of the cut-point and corresponds 

to the split threshold in a test node of a decision or a regression tree, and β which is the width, the 

degree of spread that defines the transition region on the attribute chosen in that node. With such a 
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Fig.6 Example of discriminator function: piecewise linear. 

 Piecewise linear discriminator function, the local input space of a node is split (fuzzy 

partitioned) into two overlapping sub regions of objects. Some objects go only to the left successor, 

some only to the right one, and the objects in the overlap region go to both successors. The larger 

the transition region in a test node, the larger the overlap and the softer the decision in that node. In 

consequence, any given instance is in general propagated through the tree by multiple decision 

paths in parallel: in the simplest case through one path, in the most complex case, through all the 

paths. This given instance does not effectively belong to a node it passes through, but has a 

membership degree attached to that node. Thus, the node may be seen as a fuzzy set. Finally, the 

given instance reaches multiple terminal nodes and the output estimations given by all these 

terminal nodes are aggregated through some defuzzification scheme in order to obtain the final 

estimated membership degree to the target class. 

Building a soft decision tree (SDT) 

Fig.7 presents an overview of the complete procedure for building a soft decision tree 

(SDT). The process starts by growing a “sufficiently large” tree using a set of objects called 

growing set GS. Tree nodes are successively added in a top-down fashion, until stopping criteria are 

met. Then the grown tree is pruned in a bottom-up fashion to remove its irrelevant parts. At this 

stage, a cross validation technique is used which makes use of another set of objects, called the 

pruning set PS. Next, a third step could be either a refitting step or a back fitting step. Both consist 

of tuning certain parameters of the pruned tree model in order to improve its approximation 

capabilities further. These steps use the whole learning set: LS =GS ∪PS. At the end of every 

intermediate stage, the obtained trees (fully developed, pruned, refitted or backfitted) may be tested 

in order to quantify their generalization capability. A third sample, independent from the learning 

set, called test set TS, is used to evaluate the predictive accuracy of these trees. Thus, a given 

dataset is split initially into two disjoint parts, the learning set LS and the test set TS. The learning 

set is then used to create two other disjoint sets: the growing GS and the pruning PS sets. Growing, 

pruning and test sets are (normally) composed of mutually independent samples, as far as one can 

assume that this is the case for the original dataset. 
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Fig.7 The procedure of building a SDT.    Fig.8  Fuzzy partitioning of a node in a SDT. 

 

Fault Classification 

The Confusion Matrix, shown in Table 2 is a convenient way of examining the classification 

accuracy of the models and their distribution in various classes. It gives the count of the correctly 

classified instances.  

Table2. The Confusion Matrix obtained from the decision tree model 
  

 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

F0 89  6       6  

F1  187 2 7 2   2    

F2  2 134       4  

F3   2 33      2  

F4     14   2  3  

F5      9      

F6            

F7     2   8    

F8         1 4  

F9 5 2 4 2 4 4   3 121  

F10            

                                                    Correctly classified instances 588 92.52 % 

Incorrectly classified instances 58 8.85 % 

The diagonal elements are the correctly classified faults, and the off-diagonal elements are 

the incorrectly classified faults. One can preprocess a dataset, feed it into a learning scheme, and 

analyze the resulting classifier and its performance. The learning methods are called classifiers. A 

soft decision tree (SDT), cross fold validation or a multilayer perceptron can be used to classify 

instances. 

 

4. Steam turbine fault diagnostics 
Steam turbine faults are generally classified into twenty types listed in Table 3 based on 

field experts’ experience and theoretical analyses. 
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Table 3 Steam turbine fault classification.  
Fault No. Description Fault No. Description 

F0 Normal F10 Pedestal looseness 

F1 Imbalance F11 Foundation looseness 

F2 Components missing F12 Worn coupling 

F3 Bent shaft F13 Electricity magnet excited 

F4 Shaft-seal rubbing F14 Sub-harmonic vibration 

F5 Axial rubbing F15 Oil whirl 

F6 Axial misalignment F16 Oil-whip 

F7 Eccentricity faults F17 Steam excited vibration 

F8 Rotor crack F18 Valve vibration 

F9 Shrunk-on-disc failure F19 Power disturbance 

 

In any faults diagnosis, feature extraction is an important step for detecting steam turbine 

faults. Features can be extracted from the frequency domain of a typical steam turbine vibration 

analysis. However, analysis of the steam turbine data requires a detailed understanding of the steam 

turbine design, operation, and maintenance. Vibration spectrum analysis is a practical and powerful 

tool for steam turbine fault diagnosis because it is based on a great deal of engineering experience. 

Although there have recently been many new methods applied to fault diagnosis, most approaches 

are based on or related to the vibration spectrum data. However, the fault cannot be easily related to 

the spectrum data because the steam turbine system is very complex and influenced by numerous 

process parameters. The best method is to use the feature-fault relationship matrices in well-

established machining reference databases, expert intelligence for the reasoning and decision-

making and experimental results of signal characteristics for various working conditions. Table 5 

show a fuzzy feature-faults relationship matrix for a steam turbine developed using fuzzy 

mathematics. The table relates the typical twenty steam turbine faults with ten vibration spectrum 

features. The alphabetic symbols used to describe the spectrum and process features are listed in 

Table 4. The notation n・X in the second column of table 4 denotes a frequency component (or 

range) in the spectrum at n times the turbine’s rotational speed. 

 

The relationships listed in Table 5 show that some faults such as an imbalance, F1 and a 

bent shaft, F3 cannot be distinguished since they have similar spectrum features. Therefore, a 

second relationship matrix given in Table 6 is used to relate the process features to the steam 
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turbine faults. Table 5 was derived directly from the author and other field expert experience, so it 

can be used to efficiently diagnose faults. The two relationship charts in Tables 5 and 6 provide the 

basis for steam turbine fault diagnosis. 

 

Table 4 Symbols for vibration frequency and process feature description. 

Frequency feature Description Process feature Description 

F1 0.015~0.41X P1 Amplitude jump during operation 

F2 0.42~0.52X P2	
   Vibration at various power load 

F3 0.56X P3	
   Axial vibration 

F4 0.57~1.01X P4	
   Shaft average centerline 

F5 1.5X P5	
   Critical speed spectrum 

F6 2.5X P6	
   Stable at various running speed 

F7 3.5~5.7X P7	
   Vibration level increase during 
running up 

F8 Odd of X P8	
   Level jump during run up 

F9 High X P9	
   3x at 1/3 critical speed 

F10 Power line P10 Half-speed whirl 

 

Table 5 Spectrum feature-fault relationship chart. 
Fault F1 F2	
   F3	
   F4	
   F5	
   F6	
   F7	
   F8	
   F9	
   F10	
  

F0 0 0	
   0	
   0	
   0.51 0	
   0	
   0	
   0	
   0	
  

F1	
   0	
   0	
   0	
   0	
   0.97 0.058	
   0.059	
   0	
   0	
   0	
  

F2	
   0	
   0	
   0	
   0	
   0.96 0.054	
   0.055	
   0	
   0	
   0	
  

F3	
   0	
   0	
   0	
   0	
   0.94 0.052	
   0.056	
   0	
   0	
   0	
  

F4	
   0.14 0.13 0 0.11 0.23 0.11 0.25 0.15 0.19 0 

F5	
   0.13 0.15 0 0.18 0.28 0.16 0.26 0.15 0.14 0 

F6	
   0	
   0	
   0	
   0	
   0.46 0.52 0.12 0 0 0 

F7	
   0	
   0	
   0	
   0	
   0.84 0.24 0 0 0 0 

F8	
   0	
   0	
   0	
   0	
   0.43 0.23 0.24 0 0.26 0 

F9	
   0.46 0.43 0 0.13 0 0 0 0.15 0 0 

F10	
   0.52 0.44 0 0 0 0 0.15 0 0 0 
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F11	
   0.33 0.25 0 0 0 0 0 0.56 0 0 

F12	
   0.15 0.23 0 0.14 0.22 0.34 0.16 0 0 0 

F13	
   0 0 0 0 0.46 0.22 0.25 0.24 0 0 

F14	
   0 0 1.3 0 0 0 0 0 0 0 

F15	
   0 1.4 0 0 0 0 0 0 0 0 

F16	
   0 1.7 0 0 0 0 0 0 0 0 

F17	
   0 0.37 0.16 0.65 0 0 0 0 0 0 

F18	
   0 0 0 0 0 0 0 0 1.4 0 

F19	
   0 0 0 0 0 0 0 0 0 1.7 

 

Table 6 Process feature- fault relation chart. 
Fault P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

F0 N N L L N N Y N N N 

F1 N N L L N N Y N N N 

F2 Y N L L N N N N N N 

F3 N Y L L N N N N N N 

F4 N N L L N N N N N N 

F5 N N H L N N N N N N 

F6 N N H L N N N N N N 

F7 N N L H N N N N N N 

F8 N N L L N N N N Y N 

F9 N N L L N N N Y N N 

F10 N N M L N N N P N N 

F11 N N L L N N N Y N N 

F12 N N L L N N N N N N 

F13 N N L L N N N Y N N 

F14 N N L L N N N N N N 

F15 N N L L N N N N N Y 

F16 N N L L Y N N N N N 

F17 N P L L P N N N N N 

F18 N N L L N Y N N N N 

F19 N N L L N N N N N N 
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5. Problem Simulation 
Interval Type-2 Fuzzy Inference System (IT2FIS) 

An Interval Type-2 Fuzzy Inference System (IT2FIS) are used for automatically generate 

the necessary rules. The phase of data mining using Interval Type-2 Fuzzy Inference Systems 

(IT2FIS) becomes complicated, as there are enough rules to determine which variables one should 

take into account. The search method of back-propagation and hybrid learning (BP+RLS) is more 

efficient in other methods. Since the IT2FIS method seems to produce more accurate models with 

fewer rules is widely used as a numerical method to minimize an objective function in a 

multidimensional space, find the approximate global optimal solution to a problem with N 

variables, which minimize n the function, varies smoothly. 

 
Fig.9 Rules on a Type-2 Fuzzy Inference System. 

With the application of this grouping algorithm we obtain the rules, the agent receives input 

data from its environment and chooses an action in an autonomous and flexible way to fulfill its 

function. We create an Interval Type-2 Fuzzy Inference System as how we could represent different 

agencies as a decision-making system into agents. 

 The Fig.10 shows a type-2 fuzzy inference system for steam turbine fault diagnosis. It 

depicts a set of input-output variables and a rule set. Output variables are healthy and unhealthy as a 

response of the system. We could use the difference between both values to make decisions into an 

agent as a preference decision-making system. The Fig.11 depicts the resolution example of the 

 
Fig.10 Fuzzy Inference System for steam turbine fault diagnosis. 
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rules by the fuzzy inference system. Different quantitative input values could be introduced 

and the system resolve creating different responses. Depending of the combination of inputs, we can 

expect different responses of the system. An agent will use this inference system as a decision-

making system to show different behaviors depending of the situation. 

 

 
Fig.11 Fuzzy Inference System Rule Set Evaluation for Steam Turbine Fault Diagnosis. 

 

Soft Decision Tree (Interval type-2 fuzzy logic base decision trees) Classifier Methods 

Soft Decision trees (Interval type-2 fuzzy logic base decision trees) are based on the 

following terminology. 

(1) A decision tree is a flow chart or diagram representing a classification system or a predictive 

model. The tree is structured as a sequence of simple questions with the answers to those questions 

tracing a path down the tree. 

(2) The end product is a collection of hierarchical rules that segment the data into groups, where a 

decision (classification or prediction) is made for each group. 

(3) The hierarchy is called a tree, and each segment is called a node. 

(4) The original segment containing the entire data set is referred to as the root node of the tree. 

(5) A node with all of its successors forms a branch of the node that created it. 

(6) The final nodes are called leaves. A decision made at each leaf is applied to all observations in 

the leaf. The depth of a node in a tree is the path length from the root to the node. The height of a 

node in a tree is the largest path length from the node to a leaf. The height of a tree is the height of 

its root.  

● The Node Splitting Criterion calculated the entropy to select the split between branches. While 

growing the tree, a predictor is chosen at any point to split a node so that the information gain is 

maximized after the split.  
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● The Stopping Criteria stops the node splitting and identifies the node as a leaf node if any one of 

the following criterion is met: 

(1) The number of records in the node is less than some pre-specified limit. 

(2) The node purity is more than some pre-specified limit p which means that the proportion of 

records in the node with class equal to the majority class is p or more. 

(3) The node depth is more than some pre-specified limit. 

(4) The predictor values for all the records are identical. 

● Tree Pruning is based on the pessimistic error rate at the node. Each node has a 50% error rate 

confidence interval with its upper limit taken as the pessimistic error rate. If the pessimistic error 

rate of a node is less than that of the sub tree rooted at that node, the node is pruned. 

● Interval Type-2 Fuzzy Rule Generation is based on final tree geometry. The path from root to 

each leaf node gives a rule for that leaf node. Thus, a tree with k leaf nodes has a set of k rules. 

Then individual rules are pruned by dropping clauses one by one from that rule. The decision to 

drop a clause is based on the outcome of a statistical independence test. The test evaluates whether 

keeping a clause is independent of the final decision of the rule. If it is independent, then the clause 

is NOT contributing towards the final decision and it is dropped to simplify the rule. The 

independence tests are based on the Chi-square test and Fisher's exact test. 

Table.7 Classification results for various purities. 

Maximum purity Training set 
misclassification rate 

Test set 
misclassification rate 

98% 0.01% 1.79% 

94% 0.01% 1.81% 

92% 0.01% 1.68% 

87% 0.03% 1.43% 

74% 0.02% 0.57% 

71% 0.04% 1.21% 

69% 0.01% 1.89% 

 

 

6. Application of data mining to steam turbine fault diagnosis 
A numerical simulation was developed based on the two relationship matrices in Tables 3 

and 4 to test the soft decision tree classifier. The simulation firstly generated one hundred data 
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points including spectrum features and process features for each type of steam turbine fault for a 

total of 2000 data points. Then, the data set was randomly divided into training and test sets. Next, 

the Ctree software was used to analyze the data set and to grow the soft decision tree. The pruning 

technique was used to generate a stable tree. The maximum purity of the tree was adjusted to get 

better results.  

For example, for a maximum purity rate of 100%, the misclassification rate for the training set was 

0% and for the test set was 1.8%. However, when maximum purity was reduced to 75%, the 

misclassification rate for test set was reduced to 0.50%. Table 9 lists the results for various purities. 

 

Table 8 Classification Tree Information for a purity of 75%. 
Tree information item Value Tree information item Value 

Number of training observations 987 Total number of nodes 45 

Number of test observations 1021 Number of leaf nodes 27 

Number of predictors 24 Number of levels 17 

Class variable Faults Training data misclassification rate 0.01% 

Number of classes 26 Test data Misclassification rate 0.49% 

 

Table 9 Test set results. 
Rule ID Fault class Length Support Confidence  Capture  

1 F14  1 5.5% 100.0% 100.0% 

2 F8 2 5.3% 100.0% 100.0% 

3 F6 3 5.7% 100.0% 100.0% 

4 F1 5 5.4% 100.0% 100.0% 

5 F10 6 4.8% 100.0% 100.0% 

6 F18 6 5.5% 100.0% 100.0% 

7 F0 6 4.5% 100.0% 100.0% 

8 F3 6 4.9% 100.0% 100.0% 

9 F2 6 5.6% 100.0% 100.0% 

10 F19 8 5.3% 100.0% 100.0% 

11 F12 8 4.9% 100.0% 100.0% 

12 F17 3 4.7% 96.8% 100.0% 

13 F11 10 4.7% 100.0% 100.0% 

14 F9 3 5.2% 97.2% 100.0% 

15 F13 10 5.6% 100.0% 100.0% 
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16 F7 2 7.1% 95.30% 100.0% 

17 F5 10 5.6% 100.0% 100.0% 

18 F4 10 4.8% 100.0% 100.0% 

19 F15 11 4.5% 100.0% 100.0% 

20 F16 11 4.2% 100.0% 100.0% 

 

7. Simulation Results 
Tables 6, 7, and 8 list the classification results for the simulated steam turbine faults data. 

Table 6 describes the resulting soft decision tree for a maximum purity of 75%. The 

misclassification rate is sufficiently low for common engineering applications. The soft decision 

tree was then used to develop the IF-THEN rules used by engineers to analyze and interpret the 

fault diagnosis results. The method can automatically extract the knowledge from the data as part of 

a fault diagnosis expert system. Table 7 summarizes the rule results for the test set, including the 

support, confidence and capture rates. The support rate measures how widely applicable the rule is 

in the training set. The confidence rate measures the accuracy of the rule. The capture indicates how 

many records of a fault were correctly captured by the rule. The twenty rules after pruning 

correspond to the twenty types of faults. Most of the confidence rates were 100%, with only 3 

confidence rates less than 100% due to misclassification of the test data. Table 8 lists the specific 

rules for each fault type. The rules agree well with spectrum analysis theory. In addition, many 

process features from the field experts’ experience are integrated into the rules to improve the 

classification process. 

Table 10 Rules derived from the classification tree. 
Rule  IF Then 

1 F3  .1031 F14 

2 F3  .1031,P9=Y F8 

3 F3  .1031, F6 .46009, P9=N F6 

4 F1 .84567,F3  .1031, F6 .46009, P7=Y, P9=N F1 

5 F1 .84567, F3 .1031, F5 .46031, F6 .46009, P6=N,P9=N F10 

6 F1 .0094769, F3 .1031, F6 .46009, P6=Y P9=N F18 

7 F1  .84567, F1  .0094769, F3  .1031,F6 .46009, P6=Y,P9=N F0 

8 F1 .84567, F3 .1031, F6 .46009, P1=N,P7=N, P9=N F3 
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9 F1 .84567, F3 .1031, F6 .46009, P1=Y, P7=N, P9=N F2 

10 F1 .17895,F2 .0094769, F3 .1031,F5 .46031, F6 .46009,P6=N,P9=N F19 

11 F1 .84374, F1 .198,F2 .178, F3 .107,F5 .46031,F6 .46009, P6=N,P9=N F12 

12 F2 .36761, F2 .00944567,F5 .095618 F17 

13 F1 .187,.008 F2 .23,F3 .107,.095118 F5 .477,F6 .476,  P6=N,P9=N F11 

14 F2 .20876,F5 .46031,F5 .095518 F9 

15 .187 F1 .415,F2 .0953,F3 .107,F5 .46031,F6 .46009, P6=N,P9=N F13 

16 F1  .85169, F1  .3881, F7 

17 .17 F1 .85,F2 .18,F2 .096,F3 .11,F5 .480,F6 .44 P3=H,P6=N,P9=N F5 

18 .18 F1 .87,F2 .183,F2 .098,F3 .17,F5 .49,F6 .48 P3=L,P6=N,P9=N F4 

19 F1 .18865, F2 .37651,F3 .1031,F5 .094678,F6 .476,P5=N,P6=N,P9=N F15 

20 F1 .18565, F2 .3686,F3 .107,F5 .09512,F6 .478,P5=N,P6=N,P9=N F16 

 

8. Conclusions 
Soft Decision Tree Classifier using Interval Type-2 Fuzzy Logic Rule based Data mining 

was used to classify simulated data and real data into known classes for Steam Turbine Fault 

Analysis of a Power System Rotatory Machine Component. The use of the simulated data enabled 

the system to directly capture the field experts’ knowledge into the resulting classification rules. 

The classification rules were automatically extracted from the data sets for use by engineers to 

diagnose and interpret steam turbine faults. The simulation results and the results using actual data 

from operating power plants shows that the soft decision tree classifier using interval type-2 fuzzy 

logic rule based data mining methods can be effectively applied to steam turbine fault diagnostics. 

The automatic extraction of the classification rules shows that these machine learning methods can 

be applied to large turbo-machinery databases and can include engineering knowledge and field 

experience. The results can then be used for fault diagnosis of large rotating machines, such as 

steam turbines. 
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