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Adding up (2.10) and (2.11), we have

q(g%ns 9Xn+1) + q(GXn+1, 9%n) (k(gxo) + 1(gxo) +
t(gxo))[q(gxn-1,9%,) + q(gxn, gxn_1)1+ (L(gx,) +
t(gxo))[(q(gxn+1, 9%n) + (g%, GXn41)]- (2.12)

Now, set v, = q(gxn, gxn+1) + q(gXn11, gxn) in (2.12),
we have

Uy S (k(gxo) +r(gxo) + t(gxo))vn—1 + (I(gxo)
+ t(gxo))vn-

SO v, S Uvy_q for all n>=1 with
k(gxo)+r(gxo)+t(gxo) 1

1-1(gxo)—t(gxo)

Since (k+1+7r+2t)(x) <1 forall x € X.

Continuing this process, we get v, < u"v, for n
0,1,2,.....

Rest of the proof of this theorem is similar as the Theorem
2.1.

Example 2.6. LetE = Rand P ={x € E:x = 0}. Let X =
[0,1] and define a mapping d:X xX - E by d(x,y) =
|x —y| for all x,y € X. Then (X,d) is a cone metric space.
Define a mapping q: X x X — E by q(x,y) = 2d(x, y) for all
x,y € X. Then q is a c-Distance. In fact, (q;) — (q3) are
immediate.

Let ce E with 0« c put e =§. If q(z,x) e and
q(z,y) < e, then we have d(x,y) < 2d(x,y) =2|x —y| <
2lx =z + 2|z—y| =q(z,x) + q(z,y) Ke+e=c.

This shows that (g, ) holds. Therefore q is a c-Distance.

Il:

Let f,g: X — X defined by g(x) = xand f(x) = gfor all
x € X.

Take mappings k, [, r,t: X - [0,1) by k(x) = — r(x) =
23 1(x) = 222 t( ) = —for all x € X. Observe that

(.) k(fx) = (R+ 1)/16 = i(EJ’ )<i@+)=
k(x) = k(gx). .

@r(fx) = QG +3)/16 =
3) =r() =r(gx)..

@NIfx) = 3G +2)/16 =
2) =10 = l(g).

(V)t(fx) = (—)/

(v) (k +l+r+2t)(x)

2() = (8x+6) < 1forallx € X.

(V|) forall x,y € X we have
2 —
9= 25| < B (52t
k(x)q(x y) = k(gx)q(gx, gy)

< k(gx)q(gx, 9y) + Ugx)q(fy, gy) + r(gx)q(fx, gx)

+t(g)[q(fx, gy) + q(fy, gx)].

Therefore, all the conditions of Theorem 2.5 are satisfied.
Hence f and g have acommon fixed point in X. This common
fixed pointis x = 0.

L(E43)<tcax+

i(—+2) —Gx+

=1(D) <L =) = t(gn).

e () ()

o |

3. CONCLUSION

In this paper we develop and generalize the common fixed
point theorems on c-Distance of Kaewkhao et al. [5], Rahimi
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etal. [7] and Young et al. [17]. One illustrative example is also
furnished to highlight the realized improvements.
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