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Abstract

The notion of probabilistic normed space has been redefined by C. Alsina, B. Schweizer and
A. Sklar [2]. But the results about the continuous operator in this space are not many. In this paper,
we study B-contractions, H-contractions and strongly e-continuous mappings and their respective

relation to the strongly continuous mappings, and give some fixed-point theorems in this space.
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1. Introduction

In 1963, Serstnev [1] introduced Probabilistic Normed spaces, whose definition was
generalized by C. Alsina, B. Schweizer and A. Sklar [2] in 1993. In this paper we adopt this

generalized definition and the notations and concepts used are those of [2-6].
A distribution function (briefly, d.f.) is a function F from the extended real line R= [—o0, +00]

into the unit interval 1=[0,1] that is left continuous nondecreasing and satisfies F(—)=0 and
F(0) =1. The set of all distribution functions will be denoted by A and the subset of those

distribution functions called positive distribution functions such that F(0)=0, by A" . By setting
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F <G whenever F(x)<G(x) for all x in R, a natural ordering in A and in A" has been

introduced. The maximal element for A™ in this order is the distribution function given by

0,x<0
50(X) = {L x> 0. (l)

A triangle function is a binary operation on A", namely a function r : A" xA" — A" that is

associative, commutative and nondecreasing, and which has o as a unit, that is, for all F, G, HE A"

, we have:

7(z(F,G),H) =7(F,z(G,H)),z(F,G) = (G, F),
7(F,H) <7(G,H),wheneverF <G, z(F,s,) = F.

Continuity of a triangle function means continuity with respect to the topology of weak
convergence in A",

Typical continuous triangle functions are operations z, and .., which are respectively given

by

7 (F,G)(X) = ss+ltJ:pr(F(S),G(t)), )
and

7.(F,G)(x) = Inf T*(F(s),G(t)), (3)

forall F,Gin A* andall xin R [7, Sections7.2 and 7.3], and T is a continuous t-norm, i.e., a
continuous binary operation on [0,1] which is associative, commutative, nondecreasing and has 1
as identity; T" is a continuous t-conorm, namely a continuous binary operation on [0,1] that is

related to continuous t-norm through

T(x,y)=1-TQA-x,1-vY). 4)
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The most important t-norms are function W, Prod and M which are defined, respectively, by
W (a,b) = max{fa+b -1 0}, Prod(a,b) = ab, M (a,b) = min{a, b}.
Throughout this paper, we always assume that the t-norm T satisfies

sup T (t,t) =1.

te(0.2)

Definition 1.1.[7] A probabilistic metric (briefly, PM) space is a triple (S, F, ), where S
is a nonempty set, 7 is a triangle function, and F is a mapping form SxS into A" such that, if
F,, denotes the value of F at the pair (p,q), the following conditions hold for all p,q and r in
S:

(PM1) F, =g, ifand only if p=q; (& isthe null vectorin S)

(PM2) F, =F,;

(PM2) F, 27(F.F,).

o 2
Definition 1.2.[2] A probabilistic normed space is a quadruple (V ,0,7,7"), where V is a real
vector space, r and 7" are continuous triangle functions and o is a mapping fromVinto A™ such
that for all p, g in V, the following conditions hold:
(PN1) v, =¢, if, and only if, p=6; (0 is the null vector in V)

(PN2) VpeV, v, =v, ;

(PN3) v,,, 2 7(v,,0,)

p+q —

(PN4) v, <77(v,,,0y_,),) forall a in[0,1].

pﬁ
A Menger PN space under T is a PN space (V ,v,z,7"), denoted by (V, v, T), inwhich 7 =1z,
and " =z_. for some continuous t-norm T and its t-conorm T.

The PN space is called a Serstnev space if the inequality (PN4) is replaced by the equality

v, =Ty (Uy>V4a),) » @Nd, as a consequence, a condition stronger than (PN2) holds, namely
v, (X)=0v,(%), forall peV,A#0 and xeR, ie., the (S) condition (see [2]). The pair (V ,v) is

said to be a Probabilistic Seminormed Space (briefly, PSN space) if v:V — A" satisfies (PN1)
and (PN2).

Let { p,}._, be asequence of points in V. A is a sequence that converges to p in V, if for each

t>0, there is a positive integer N such that v, ,(t)>1-t for n>N, and is a Cauchy sequence,
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if foreach t > 0 there is a positive integer Nsuchthat v, - (t)>1-t forall nm> N.APN space
is complete if every Cauchy sequence converges.

Definition 1.3.[7] A PSN space (V ,v) is said to be equilateral if there is a d.f. FeA"
different from ¢, and from ¢, such that, for every p=6, v, = F . Therefore, every equilateral
PSN space (V ,v) is a PN space under 7 =z*=r,,, where the triangle function is defined for

G,H eA" by

7, (G, H)(x) = sup min{G(s), H (t)}.
S+t=X
An equilateral PN space will be denoted by (V,F,M).

Definition 1.4.[8] Let (V ,u,7,7") be a PN space, for peV and 4<(0,1). We give the
following two conditions:

(Z,) Forall ae(0,1), there existsa £ €[Loo[ such that

v,(4)>1- 4 implies v, (a4) >1—%,1.

(Z,) Forall ae(0,1), let B,(a,A) =502 then

a
Fo(a,4)

Definition 1.5.[7] There is a natural topology in the PN space (V ,v,z,7"), and it is called
strongly topology, defined by the following neighborhoods: N (1) ={qeV :v, (1) >1-1},

A.

v,(1)>1- 1 implies v, (ad) >1-

where A2>0. The strongly neighborhood system for V is the union N where

p H
N, ={N,(4);1>0}. In the strongly topology, the closure N (1) of N (1) is defined by
N, (1) :=N_ (1) U N, (4),where N (1) is the set of limit points of all convergent sequences

in N_(4). From [5, Theorem 3], we know every PN space (V, v, 7 ,7") has a completion. C.Alsina,
B.Schweizer and A. Sklar [3, Theorem 1] have proved that o is a uniformly continuous mapping

from V into A”.

Now, we give two different definitions of the contractions in PN space.
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Definition 1.6.[7](i).A mapping f:(V,v ,z,7") » (U,u,o,0") is a B-contraction, if

there is a constant k € (0,1) such that for all p and g in V, and all x>0,
Hi (-1 (KX) 20, (X). (5)

(i)). Amapping f:(V,v ,z,7°) - (U,u,o,0") is an H-contraction, if there is a constant

k €(0,1) such that for p and g in V, and all x>0,
v, (X) >1=ximplies s o (KX) >1-kx. (6)

Remark 1.1. If f is a linear operator, for all peV , we have that (1.5) is equivalent to
Hipy(KX) Z v, (X) and (1.6) is equivalent to that
v,(X) >1—x implies g, (kx) >1-kx.

Definition 1.7. [6] Given a nonempty set A in a PN space (V ,u,7,7"), the probabilistic
radius R, of A is defined by

0@, (x), X €[0,+oo[,
1 X = +oo,

RA(X) = { (7)

where ¢~ f (x) denotes the left limit of the function f at the point x and

a(x) =inf{v (X): p e AL

As a consequence of DEFINITION 1.7., we have v, >R, forall pe A

Definition 1.8. [9] In a PN space (V ,u,7,7"), amapping f:V —V is said to be strongly
& -continuous (&> 0), if for each p eV, it admits a strong A -neighborhood N (1) such that

Riw, oy (€) >1-¢.

Lemma 1.9. [9] Suppose (V ,u,7,7") be a PN space and AcV . If f:A— A is strongly

& -continuous, then for each pe A and £ >0, we have

Vip(€)>1-e.
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2. Main Results

Definition 2.1. A mapping f:(V,v ,z,7") » (U,u,o,0") isstrongly continuous, if for

any ¢ >0, there exists & >0 such that

qeN,(6)= T(a) eN¢(,(e), (8)

where (7, v, 7, o) and U>£:997) are PN spaces, and P-d€V G}
Theorem 2.1. In a PN space (V, v, 7, t*) with 7>7, , a strongly & -continuous mapping
f:V -V s strongly continuous.

Proof. Let &£ <1/2. In view of Definition 1.8, there exists 6 >0 such that R, ;(e/2)>1-¢/2
therefore ge N (0) = v;,(¢/2) > Rf(Np(5>)(g/ 2)>1-¢/2,ie,

v, ,(0)>1-05 implies v, ,(e/2)>1-¢/2. From peN_ (5) : we have
Oy (€2 2Ry 5(e/2)>1-¢/2, thus
Vs oyt (@ (&) 2 7(Vs (), V1)) (€)

> Ty (U (p)> Vs (9 ) (&)

= SUPW (U; (), Uy (¢ (1))

S+t=¢

=W (04 () (£/2),04 4, (/2))
>W(l-g/2,1—g/2)

=1l-¢
ie., F(g)eN,,(s). So vaeN (8)= f(@)eN,,(&).

Theorem 2.2. Let (V, v, 7, 7¥) be a PN space, then
(1). A B-contraction mapping is strongly continuous;
(ii). an H-contraction mapping is strongly continuous.

Proof. (i). Suppose (V, v, 7, *) be a PN space and f :V —V be B-contraction. According to
Definition 1.6, there is a constant k € (0,1) such that for p and g in V, and x>0

Os (p)-1 (q) (KX) = 0 o (X). 9)

Therefore, let a>1, we have
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D (p)-1(q) (BX) = Vg (g (KX) 2 0 (X). (10)

Let vpq(X)>1-x we have

uf(p)_f(q)(ax) ZUp_q(X) >1-x>1-ax, (11)
ie.,
qENp(X):> f(q)ENf(p)(aX)' (12)

So for >0, set & = £/ a such that

qe N, (0)= f(q) eN;(, (&) (13)

By Definition 2.1., we have that f is strongly continuous.

(ii). Suppose (7, v, 7, t*) be a PN space and f :V —V be H-contraction, and if £>0, in view

of Definition 1.6, there is a constant k, € (0,1) such that for pand q in V,

v, (/k))>1—¢g/k,implies v, ¢, (&) >1-¢, (14)
ie.,
qde N (e/k)) = f(a) e N, (&) (15)

So for £>0, set 6 = &/k, such that

deN,(0)= f(q) e N, (&) (16)

Basing on Definition 2.1., we have proven that f is strongly continuous. [J
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The following examples, Example 2.1. and 2.2., show that a B-contraction isn’t necessarily an
H-contraction, an H-contraction isn’t necessarily a B-contraction, and a strongly continues
mapping isn’t necessarily a B-contraction or an H-contraction.

Example 2.1. Let V be a vector space and v, = 4, = ¢,, if a€(2,3),p, qeV (p, g#80)and
XeR,
0,x<0
1/a,0<x£2—6l
3

up(x)z{o’“a (%) =
Lx>a

2/a,2?a<x<oo

Lx=00

and if z(v,,0,)(X) =7"(v,,v,)(X) = supmin(v, (s),v, (1)), then (¥, v, 7, ¥ and (V, p, 7, %) are

S+t=X

equilateral PN spaces by Definition 1.3. Now let I: (V, v, 7, t*) —(V, i, 7, t*) be the identity operator,

then | is not a B-contraction, but an H-contraction. In fact, for every k € (0,1), x>a and p#6,
2 : :

, (KX) < g1, (X) = p,(x) == <1=v (x). Hence | is not a B-contraction.
a

Next we’ll prove that I is an H-contraction. Suppose v,(x)>1-x, where p=6 . This
condition holds only if x>1. In fact, if x<1, then v (x)=0<1-x. For ae(2,3), if 1<x<a,

let h=2%, then £<hx <22, therefore /J,p(hx)=up(hx)=§>%=1—§>l—hx.lf x>a,let h=2

, then hx > 22 therefore g, (hx) = u,(hx) = 2 > 1—% >1-— Z?a >1—hx. Thus there is a constant

h =2 such that for all points p= @ inV ,and all x>0,
v, (x) >1-ximplies z,(hx) >1-hx, 17)

i.e., I is an H-contraction. In view of Theorem 2.2. (ii), we have that I is strongly continuous.

Example 2.2. Let V =V'=R, v, = 44, = &, , if, for x>0, p=0 and a =%, where k €(0,1),
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0,x<0 0,x<0
1 1 a
Up(X): 5,0<X£a ILlp(X): 5,0<XSE
La<x<o L%<ng

and if z(v,,v,)(X) =7"(v,,0,)(X) = supmin(v, (s),v,(1))), then (Ru,7,7") and (R, u,7,77) are

p>q
S+t=X
equilateral PN spaces by Definition 1.3. Now let I: (R,0,7,7") > (R, i1, 7,7") be the identity
operator, then 1 is not an H-contraction, but a B-contraction. In fact, for every k € (0,1), we have

that a =42 (3,2). Let x =1, we have that up(x)=up(§)=§>1—§=l—x. But,

1 1, 1 k
1 (00) < 11, (X) = 1 () = 1 (5) = = <1== =1-kx.
a a a a

Hence | is not an H-contraction. Meanwhile, for every p e R and x>0, there exists a constant

k, =% such that

0,x<0

2X 2X X 1
zulp(kox) = /’l|p(?) = ﬂp(?) 2 lLlp(E) = 590 <X<a= Up(X)a

La<x<ow

i.e., I is a B-contraction. In view of Theorem 2.2.(ii), | is strongly continuous.
Example 2.3. Let PN space (V, v, 7, ¥ and (V,u7,7") satisfy Example 2.1, and I:
V.,v,7,7°) = (V,u,7,7") be the identity operator, then | is not strongly e-continuous, but strongly

continuous. In fact, according to Example 2.1., it is obvious that I is strongly continuous.
Now we are going to prove that | is not strongly e-continuous. Suppose | is strongly e-

continuous. Let A=V be not empty. In view of Lemma 1.1., for each p€ A and & >0, we have

Hip(8)>1=6. 0 vever. Tt £,€(0,4), foreach pe A and p=0, we have
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ty,(80) = 1, (&) < yp(%) = é < % <1-¢g,.Thus, there appears a contradiction. So, we have

that I is not strongly e-continuous.
Lemma 2.1. [10] Let V be Banach space and D be a compact and convex subset of V. If

f : D — D is astrongly continuous mapping, then f has at least one fixed point on D.

Not all PN spaces are Banach spaces; Lemma 2.2. shows that under some conditions, a PN
space is a Banach space.

Lemma 2.2. [8] Let (V, v, 7, *) be a TV PN space and N,(A) be strong A1 -neighborhoods of
0, where 1€(0,1).

(i) Suppose 7 >, . If there isan N,(A) satisfying (Z,), then (V,v,7,7") is nomable.

(i) Suppose 7>7_, (7 =Prod). If there is an N (A1) satisfying (Z,), then (V,v,7,77) is
nomable.

Theorem 2.3. Let A be a compact and convex subset of TV PN space (V,v,z,7") and
f : A— A be a strongly continuous mapping.

(i) Suppose 7 >z, and there isan N, (1) satisfying (Z,), then f has at least one fixed point
on A.

(if) Suppose 7> 17, andthereisan N,(4) satisfying (Z,),then f hasat least one fixed point

on A.
Proof. In view of Lemma 2.1. and Lemma 2.2., it is obvious that Theorem 2.3. holds.
Corollary 2.1. Let A be a compact and convex subset of TV PN space (V, v, 7, *) and

f : A— A be a B-contraction or an H-contraction mapping.
(i) Suppose 7 =1z, and there is an N,(4) satisfying (Z,), then f has at least one fixed point

onA.

(if) Suppose 7 > 7, and there isan N,(A) satisfying (Z,), then f has at least one fixed point
onA.

Proof. In view of Theorem 2.2., we have that f : A— A is a strongly continuous mapping on
A. By Theorem 2.3., f has at least one fixed point on A.

Corollary 2.2. Let A be a compact and convex subset of TV PN space (V, v, 7, *) and

f : A— A be astrongly & -continuous mapping.
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(i) Suppose 7 =17, and there is an N,(4) satisfying (Z,), then f has at least one fixed point
on A.
(i) Suppose 7 > 7, and there is an N,(4) satisfying (Z,), then f has at least one fixed point

on A.

Proof. In view of Theorem 2.1., we have that f : A— A is a strongly continuous mapping on

A. By Theorem 2.3., we have that f has at least one fixed point on A.
Theorem 2.4. Let A be a compact and convex subset of PN space (V, v, 7, t*), where (V, v, ,

t*) isa Banach space. If f : A— A isastrongly continuous mapping, then f has at least one fixed

pointon A.
Proof. In view of Lemma 2.1., it is obvious that Theorem 2.4. holds. [

Let (7, v, 7, *) be aPN space and f :V —V be asingle-valued self mapping. A point peV

with the property v, , =&, is called a fixed point of f onV . Note that, for every peV /{6},
if v, ,(t)<1forall t>0 (see [12], Example 2.4.), then f(p)=p, ie., f has no fixed point

on V . In such a situation a question arises about the existence of an approximate fixed point. The
following is the definition of the approximate fixed point in PN space.

Definition 2.2. [9] Suppose (V, v, 7, 7*)be a PN space and AcV . We call pe A an ¢ -fixed

point of f:A— A, if, there exists an ¢>0 such that supv; ,(t)=1. A self mapping
t<e

f : A— A has approximate fixed point property (in short a.f.p.p.) if the function f possesses at
least one ¢-fixed point.

Definition 2.3. A is bounded, if for every n €N and for every p €A, there is a k €N such that
Vo 1/n)>1-1/n.

Lemma 2.3. [3] If |« [<[ B], then v,, > v,

Theorem 2.5. Suppose A be a bounded and convex subset of PN space (¥, v, 7, 7*) with 7 >z,

, Where(V, v, 7, t¥) is a Banach space. If the mapping f : A— A is strongly ¢ -continuous, then f

has at least one approximate fixed-point on A.

Proof. Since f is an & -continuous on A, by Definition 1.8. and Lemma 1.1, we have that for

every pe A, supv;,(&)=1 Let B be a compact and convex subset of A, defined by
>0

B=(1—a)A where A is a closure of A and (0<a<1) In view of Theorem 2.1., we have that f is

strongly continuous. We can define a strongly continuous function g: B — B by
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g(p)=(@-a)f(p),vpeB.By Theorem 2.4., there is a p, € B such that g(p,) = p,, which
implies (1-a) f(py) = P, - Whence v_y¢p)-p, = €0 Since f(py) - py=(1-2a)f (py) - Py +af (py),
by (PN3) and Lemma 2.3., we have

Ot (po1-po = Tty t (po)-po > Vat (po))
= 7(&,V1(py))

= Ut (py)-

By taking sup over 0<t<e on both sides of the inequality, we have supv, ., , (t) = supo;, ().
O<t<e O<t<e
Because p,eB< A, supu,,,(t)=1. So supv;,, , (t) =supv;,,(t) =1. According to
O<t<e O<t<e O<t<e

Definition 2.2. po is an approximate fixed point of f, thus f has at least one e-fixed-point on A.[]
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