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Abstract

The aim of this paper is to study the Bayesian estimation of reliability of geometric

distribution based on complete sample and record values, respectively. For Bayesian inference,

loss function and prior distribution are two important aspects in statistical inference process. The

Bayes estimation is discussed under a precautionary loss function, and the Bayesian estimators of

reliability of geometric distribution are obtained based on two different prior distributions,

namely, the quasi-prior and Beta prior distributions. Finally, numerical simulations are given to

illustrate the results.
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1. Introduction

In life testing experiments, a lot of work has been done under the continuous lifetime

models. Sometimes it is neither possible nor convenient to measure the life length of an item

continuously until its failure. When failure time data is sometimes discrete either through the

grouping of continuous data due to imprecise measurement or because time itself is discrete, the

geometric distribution is a natural choice. It possesses most of the nice properties of the

exponential distribution, of course in the discrete set up. In such circumstances one measures the

life of a device on a discrete scale and considers the number of successful cycles, trials, or

operations before failure. Therefore, the number of successful trials before failure is more
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pertinent than the time of continuous period. The Geometric distribution, owing to its lack of

memory property and constant failure rate, and it belongs to the class of long tailed distributions

and as such, the occurrence of extreme observations is quite common. Thus it widely used to

model discrete reliability. Other applications of the geometric distribution are in Ecology,

Information Theory and Cryptography, Labor Economics, Demand Analysis etc. Many authors

like Elneweihi and Govindarajulu (1979), Yaqub and Khan (1981), Burke et al. (1992), Xie and

Goh (1997), Zhang et al. (2004), Masmoudi et al. (2016) and Hong and Lee (2015) have

contributed to the methodology and estimation of the parameter of the geometric distribution.

Also, some authors developed many new distribution models based on Geometric distribution,

and they studied the applications and statistical inference of these new proposed distributions

(Gómez-Déniz and Calderín–Ojeda, 2015; Nadarajah and Bakar, 2015; Chakraborty and Bhati,

2016; Balakrishnan et al., 2015; Shao and Wang, 2015).

The record values can well describe the trend of some random variables sequence, and thus

it is widely applied to the fields of weather forecasting, earthquake prediction, sports science,

engineering science, etc. (Ahsanullah, 2004). For example, the data comes from the Olympic

Games of broking a world record, the maximum rainfall in the meteorology (snow). Research on

the change trend of record value and statistical inference theory are of great significance to the

development of national economy.

Statistical inference about the value of records has become a hot topic in statistical research.

Based on record values, Zhao et al. (2008) studied random order on the basis of single and double

sample respectively; Xiong (2008) proposed a Expect Bayes estimation approach to estimate the

reliability of geometric distribution under entropy loss function and square loss function when the

prior distribution of the reliability is power distribution. Ren and Ren (2010) studied the

estimation of exponential distribution parameter based on record values, and obtained the

minimum risk equivariant estimation, Bayes estimation and empirical Bayes estimation under

entropy loss functions, and further discussed the admissible character of a class of linear form of

estimation; Xing (2010) discussed the loss function and risk function of Bayes estimation

problem of exponential distribution parameter under Rukhin loss function combining decision-

making error with statistical discriminate rule. They also obtained the conditions of the

corresponding Bayes estimation for a conservative estimate.

Here we assume that the lifetime of certain items has a Geometric distribution with

probability mass function (pmf)
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The object of the present paper is to obtained Bayes estimators for reliability of Geometric

distribution under a precautionary loss function, The rest of this paper is organized as follows. In

Section 2, some useful preliminaries are introduced. The Bayes estimators of the reliability are

obtained under the different priors and a precautionary loss. In Section 4, discussion analysis is

given through numerical examples. Finally, conclusions are given in Section 5.

2. Preliminary Knowledge

It is well-known that, for Bayes estimators, the performance depends on the form of the

prior distribution and the loss function assumed.

2.1 Prior Distribution

In the Bayesian approach, we further assume some prior knowledge about the reliability

parameter R is available to the investigator from past experiences with the underlying queuing

system. The prior knowledge can often be summarized in terms of the so-called prior densities on

the parameter space of R. In the following discussion, we assume the following priors:

(i) The quasi-prior distribution:

For the situation where the experimenter has no prior information about the parameter R,

one may use the quasi density as given by

0,0,
1

);(1  cR
R

cRp
c

(2)

Hence, c = 0 leads to a diffuse prior and c = 1 to a non-informative prior.

(ii) The Beta prior distribution:

The most widely used prior distribution of R is the Beta prior distribution with parameters a

and b( > 0), denoted by Beta(a, b) , the corresponding probability density function (pdf) is given

by the following formula:

0,,)1(
),(

1
),;( 11

2   baRR
baB

baRp ba

(3)
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2.2 Loss Function

In Bayesian analysis, a commonly used loss function is the squared error loss function

2)ˆ(),ˆ( qqqqL  , which is symmetrical, and associates equal importance to the losses due to

overestimation and under estimation of equal magnitude. However, such a restriction may be

impractical. For example, in the estimation of reliability and failure rate function, an overestimate

is usually much more serious than an underestimate; In this case, the use of a symmetrical loss

function might be inappropriate, which has been recognized by Basu and Ebrahimi (1991) and

Soliman (2005). A useful asymmetric loss known linear exponential (LINEX) loss function was

introduced in Zellner (1986), which has been found to be appropriate in the situation where

overestimation is more serious Under-estimation or Vice-versa. The LINEX loss function has

been widely used in many fields. Also, in recent time there are a lot of authors studied LINEX

loss functions for different distribution. Such as, Jaheen (2004) studied the exponential model

based on record statistics, where the Bayes estimators obtained on the basis of the square error

loss and LINEX loss functions. Also, Li et al. (2007) derived Bayes estimators for Burr XII

distribution based on progressively Type-II censored samples under LINEX error loss function.

You and Zhou (2015) firstly derived the Bayes estimator of the location

parameter in double-exponential family under the LINEX loss function, and then constructed

the corresponding empirical Bayes estimator. They also shown that the empirical Bayes

estimator is asymptotically optimal with some convergence rate.

Another useful asymmetric loss function is the General Entropy (GE) loss. This loss

function was used in several papers, as an example see Dey et al. (1987), Dey and Lin (1992) and

Soliman (2005). And Norstorm (1996) proposed an asymmetric loss function known as

precautionary loss function with the following form:

q

qq
qqL

ˆ

)ˆ(
),ˆ(

2


(4)

Where q̂ is an estimator of q . The loss function (4) infinitely near to the origin to prevent

underestimation, thus giving conservative estimators, especially when low failure rates are being

estimator. It is very useful when underestimation may lead to serious consequences. This loss

function was used by several authors; among of them Yarmohammadi and Pazira (2010), Pandey

and Rao (2009), Mohsin et al. (2012).
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Lemma 1. Under the precautionary loss function (4), where q̂ is a estimator of q , then for

every prior distribution )(qp of q . The Bayes estimator of q is given by

212 )]|([ˆ XqEqB  (5)

Provided that )|( 2 XqE exist, and is finite.

Proof. Under the precautionary loss function (4), the Bayes risk of q̂ is

)].|),ˆ(([)ˆ( XqqLEEqr 

To miminize )ˆ(qr , we only need )|),ˆ(( XqqLE almost obtained minimum.

Let

)|
ˆ

2ˆ()|),ˆ(()ˆ(
2

X
q

q
qqEXqqLEqf 

]|[
ˆ

1
]|[2ˆ 2 XqE

q
XqEq 

Then, we have

]|[
ˆ

1
1)ˆ( 2

2
XqE

q
qf 

And 0]|[
ˆ

2
)ˆ( 2

3
 XqE

q
qf is always true.

Thus the solution of 0)ˆ(  qf , i.e. 212 )]|([ˆ XqEqB  is the minimum value of )ˆ(qf  .

Therefore 212 )]|([ˆ XqEqB  is the Bayes estimator of q under the precautionary loss

function (4).

3. Bayes Estimation

3.1 Bayes Estimation Based on Complete Samples

In this section, we are interested in estimating the estimation of the reliability R of the

Geometric distribution (1) under the precautionary loss function (4), and the unique Bayes

estimator of R, say
BR̂ , is given by 212 )]|([ˆ XRERB  .
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Theorem 1. Let nXXX ,,, 21  be a sample drawn from the Geometric distribution (1),

nxxx ,,, 21  is the corresponding observation value. 



n

i
ixt

1

is the observation of





n

i
iXT

1

. Then under the precautionary loss (4), we have

(i) On the basis of quasi-prior (2), the Bayes estimator of R is

2/1

1
)2)(3(

)1)(2(ˆ








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
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(ii) On the basis of Beta prior (3), the Bayes estimator of R is

2/1

2
))(1(

))(1(ˆ
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
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
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
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Proof. The likelihood function of R is given as

tn RRRL )1()( 

(6)

Then It is easily shown that the maximum likelihood estimator of R is given as

nT

T
RML


ˆ .

For the case (i), we consider the prior density of R is quasi-prior (2). The likelihood function

is combined with the prior (2) by using the Bayes theorem to obtain the posterior density:

h1(R/x) l(R/x) p1(R) (1R)nR t-c,

Then











1

0

1

)1(

)1(
)/(

dRRR

RR
xRh

ctn

ctn

(7)

It is obvious that R|X is distributed with Beta distribution Beta(Tc+1, n+1). Then, under

the precautionary loss (4), the Bayes estimator of R is

2/1
1

0
1

22/12
1 ])|([)]|([ˆ  dRxRhRXRER
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For the case (ii), we consider the prior density of R is Beta distribution with parameters a

and b ( > 0 ). The posterior density of R can be obtained by using Bayes theorem combining with

Eq. (8) as:

h2(R|x) l(R|x) p2(R)  (1R)n+b-1R t+a-1

Then


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It is obvious that R|X is distributed with Beta distribution ),( bnaTBeta  . Then,

under the precautionary loss function (4), the Bayes estimator of R is
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3.2 Bayes Estimation Based on Record Value

Let nXXX ,,, 21  be a independent and identically distributed random variable sequence

from the population X, which comes form the distribution F(x;q) and probability density
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function f (x;q). For any postive number n > 1, set U(1) = 1, U(n+1) = min{j: j > U(n), Xj >

XU(n) }. Here XU(n) is called the n-th upper record valuem and U(n) is called the n-th record time.

Suppose that nXXX ,,, 21  be a i.i.d. random sample comes from geometric distribution

(1). XU(1), XU(2), …, XU(n) is the observed n first record value sample, and xU(1), xU(2), …, xU(n) is

the corresponding observation. Then for given xU(1)=XU(1), xU(2)=XU(2), …, xU(n)=XU(n), the

likelihood function of reliability R can be obtained as follows[1]:

)(
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By equation (1), we have
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Then we can easily obtain the following result:
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The we solve the maximum likelihood estimator(MLE) of reliability R as follows:

T
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X
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
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1
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where T= XU(n)+1. It is easily to prove that the random variable T= XU(n)+1 is the completely

statistics of R, and T distributed with negative binomial distribution NB(n ,R) with the following

formula:

,1,,)1()( 1
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TG ，then we can easily prove that
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Then G(T) is the minimum variance unbiased estimator for reliability R, we denote G(T) by

UR̂ , i.e.
1

1
1ˆ






T

n
RU

Theorem 2. Let X=(XU(1), XU(1), …, XU(n)) be the first n upper record values comes from

geometric distribution (1), and x=(xU(1), xU(1), …, xU(n)) be the corresponding observation values,

T= XU(n)+1. Then

(i) Under the squared error loss function, Bayes estimator of reliability R is

baT

bn
RBS




 1ˆ (12)

(ii) Under the precautionary loss function (4), the Bayes estimator of R is

1

1
1ˆ






baT

bn
RBP (13)

Proof. Using Bayes theorm, the posterior probability density function is derived as follows:

11)1(
)1()();()|( )( 

 bnnxa
RRRpxRLxRp nU ,

Then R|X distributed with Beta distribution Beat(a+T+n, n+b).

(i) Under the squared error loss function (8), Bayes estimator of reliability R is

1
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(ii) Under the precautionary loss function, the Bayes estimator of R is
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4. Discussion

Example 1 (Estimation based on complete sample)

We generated 2000 samples of size n=50 from the geometric distribution as mentioned in

section 1. Table 1and 2 show Bayesian estimates of the parameter for different values of the

parameter R under the prior distributions (i) :quasi-prior density, and (ii): Beta prior density.

Table1. The Bayesian estimates with r = 0.5, n =50

MLR̂ c 1R̂ (a, b)
2R̂

0.4970 0.0 0.4996 (1.0,1.0) 0.4996

0.4936 1.0 0.4912 (1.0,1.0) 0.4963

0.4953 2.0 0.4878 (1.0,1.5) 0.4956

0.4935 2.5 0.4834 (1.0,2.0) 0.4914

0.4745 3.0 0.4818 (2.0,1.0) 0.5022

Table2. The Bayesian estimates with r = 0.8, n =50

MLR̂ c 1R̂ (a, b)
2R̂

0.7964 0.0 0.7945 (1.0,1.0) 0.7945

0.7969 1.0 0.7941 (1.0,1.0) 0.7949

0.7974 2.0 0.7938 (1.0,1.5) 0.7939

0.7967 2.5 0.7926 (1.0,2.0) 0.7916

0.7967 3.0 0.7922 (2.0,1.0) 0.7956

Example 2 (Estimation based on record value)

In order to compare the Bayes estimators with the maximum likelihood estimator and the

minimum variance unbiased estimator, the example adopted from the Nelson [15] is used. To

illustrate the test of the voltage strength of a certain electronic insulating liquid, the breakdown

time of 19 samples of this kind of insulating liquid is measured under 34KV voltage, and the time

distribution of the compressive strength of Nelson experimental electronic insulation is usually

fitted by exponential distribution. As is known to all, an integral part of the observed value of an
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exponential data constitutes the geometric data. The first 6 record values x = ( xU(1), xU(2), xU(3),

xU(4), xU(5), xU(6) ) = (4, 8, 31, 33, 36, 72) from the geometric distribution were observed in the

first samples from the geometric distribution. The maximum likelihood estimate of the

parameters is: 9178.0ˆ MLER , the minimum variance unbiased estimator of the parameter is:

9306.0ˆ UR , the Bayes estimate of the parameter is shown in Table 3.

Table3. Bayes estimates of geometric distribution reliability under different prior parameters

Prior parameter (a, b) (0,0) (0.5,0.5) (0.5,1.0) (1.0,1.0) (1.0,1.5) (1.5,1.5)

BSR̂ 0.9178 0.9122 0.9060 0.9067 0.9007 0.9013

BPR̂ 0.9195 0.9139 0.9079 0.9085 0.9026 0.9032

It has been observed from Table1 to Table3 that there is very little change in values of the

Bayesian estimates of the reliability R. We have considered two priors with the sole intension of

providing alternatives to the practitioner. We believe these are quite flexible and capable of

modeling a wide variety of prior information. Based on record values, the Bayes estimation of the

reliability of the square error loss and precautionary loss function are derived in the case of a

given geometric distribution. From table 3 we can see the hyper parameters (a, b) the value of

impact on the results of Bayes is not great, obtained under the weighted square loss function of

the Bayes estimates closer to the reliability of the minimum variance unbiased estimation, so in

the application, we propose to use Bayes estimation
BPR̂ .

5. Conclusion

A Bayesian approach for the estimation in Geometric distribution has been presented. Based

on complete sample and record values, this paper studies the Bayes estimation of the parameter of

Geometric distribution under a precautionary loss function, which is a asymmetric loss function

particularly suitable to be used in estimating reliability and failure rate occurred in engineering

fields. Two prior distributions, namely, the quasi-prior and Beta prior distributions are used as the

prior distribution of the unknown parameter. To illustrate the results, two numerical simulations

are used to analyze. The results obtained in this paper can be applied to estimate the reliability

parameter of geometric model in practical problems. The methods can also be similarly to extend

to other distributions, such as binomial distribution, negative binomial distribution.
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