
54

AMSE JOURNALS-2016-Series: Advances D; Vol. 21; N°1; pp 54-65

Submitted July 2016; Revised Oct. 11, 2016, Accepted Nov. 15, 2016

Design of Basic Logic Gates

 using CMOS and Artificial Neural Networks (ANN)

R. K. Mandal

Department of Computer Science & Application, University of North Bengal

Raja Rammohunpur, PO : NB Distt: Darjeeling, West Bengal – 734013, India

(rakesh_it2002@yahoo.com http://www.nbu.ac.in)

Abstract: - This paper shows an approach to simplify the electronic circuits by using

Complementary Metal Oxide Semiconductors (CMOS) transistors and develop the equivalent

Artificial Neural Networks (ANNs). The development of these types of circuits leads to the

simple hardware implementation of ANN models. In this paper the three basic gates already

implemented using CMOS are designed by using simple Self Organizing Map (SOM) ANNs,

which are unsupervised.

Key-words: - Complementary Metal Oxide Semiconductors (CMOS), Artificial Neural

Networks (ANNs), Self Organizing Map (SOM), Gates

mailto:rakesh_it2002@yahoo.com

55

I. Introduction

Now-a-days computing is converging towards intelligent computing. Intelligence can be best

implemented in computers using Artificial Neural Networks (ANNs) [1, 2]. Research is going

on to develop models which can be used in various applications like medical informatics,

handwriting recognition, speech recognition, and other applications of pattern recognition [3,

4, 5, 6]. After the development of these models the major challenge is to implement these

models in the hardware circuits. If ANNs are developed equivalent to the CMOS circuits,

then it becomes simple to map ANNs to hardware circuits using CMOS [7, 8, 9, 10].

Forssell M has worked in the field of hardware implementation of Artificial Neural Networks

[11]. Work has already been done in this field where CMOS circuit was designed that accepts

synapses inputs and generates pulse width modulated output waveform of constant frequency

on the basis of activation level [12]. Logic gates are implemented in single layer and two

layers feed forward neural network based supervised learning [13]. In an approach Artificial

Neural Network (ANN) is used to demonstrate the way in which the biological system is

processed in analog domain by using analog component like Gilbert cell multiplier, Adder,

Neuron activation function for implementation [14]. Hui W et al worked on the use of

artificial neural networks on segmented arc heather failure prediction [15].

This paper has been divided into three sections. Section-1 discusses the implementation of a

simple ANN CMOS NOT gate. Section-2 discusses the implementation of a simple ANN

CMOS AND gate. Section-3 explains the implementation of a simple ANN CMOS OR gate.

II. NOT-Gate using CMOS and Equivalent ANN

In Figure 1, an ANN has been developed which can replace a NOT gate. The ANN given in

the above figure has been developed using CMOS, where ‘x’ is the input of ANN and ‘y’ is

the output. ‘T1’ and ‘T2’ are the artificial neurons which replaces two transistors of the

CMOS NOT gate. The ‘x’ and ‘Vdd’ are the inputs of ‘T1’ with weights ‘w1’ and ‘w2’. The ‘x’

and ‘Vss’ are the inputs of ‘T2’ with weights ‘w2’ and ‘w4’. Another neuron ‘R’ is used as

referee neuron. The outputs ‘p’ and ‘q’ of the neuron ‘T1’ and ‘T2’ are the inputs to referee

neuron with weights ‘w5’ and ‘w6’. The output of the referee neuron is ‘y’ which is the output

of the NOT gate. Neuron ‘T1’ uses the following algorithm to generate the output.

56

Algorithm 1: Output generation of upper transistor of the ANN CMOS NOT gate.

Step 1: The weights ‘w1’ and ‘w3’ are fixed and assigned values as given below:

‘w1’ = -1 and ‘w3’ = 1

Step2: Assign ‘vdd’ = -1

Step3: Calculate ‘y1’ = x*w1 and ‘y2’ = vdd*w3

Step4: If ‘y1’ >= 1 then ‘p’ = 1 else ‘p’ = y2

Step 5: Stop

Neuron ‘T2’ uses the following algorithm to generate the output.

Algorithm 2: Output generation of lower transistor of the ANN CMOS NOT gate.

Step 1: The weights ‘w2’ and ‘w4’ are fixed and assigned values as given below:

‘w2’ = 1 and ‘w4’ = 1

Step2: Assign ‘vss’ = 1

Step 3: Calculate ‘y3’ = x*w2 and ‘y4’ = vss*w4

Figure 1: ANN NOT-Gate using CMOS

y2

y1

y4

y3

R

x

y

w1

w2

w3

w4

w5

w6

vdd

vss

p

q

T1

T2

57

Step 4: If ‘y3’ < 0 the ‘q’ = y4 else ‘q’ = -1

Step 5: Stop

The referee neuron is a simple perceptron having two inputs without a bias and an output

which is the output of the inverter.

Example 1: This example shows the working of an ANN-CMOS inverter.

Let us consider the value of ‘x’ as ‘-1’.

w1 = -1 and w3 = 1

vdd = -1

y1 = (-1) x (-1)

y1 = 1

y2 = (-1) x 1

y2 = -1

y1 = 1 therefore p = 1

Now, w2 = 1 and w4 = 1

vss = 1

y3 = (-1) x 1

y3 = -1

y4 = 1 x 1

y4 = 1

y3 < 0 therefore q = 1

Now p = 1 and q = 1

w5 = 1 and w6 = 1

Applying perceptron learning rule:

y_out = p*w5 + q*w6

y_out = (1 x 1) + (1 x 1)

Table 1: Truth Table for ANN-CMOS NOT gate

x w1 w2 w3 w4 w5 w6 vdd vss y1 y2 y3 y4 p q y_out y

-1 -1 1 1 1 1 1 -1 1 1 -1 -1 1 1 1 2 1

1 -1 1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 -2 -1

58

y_out = 2 which is > 0 therefore y = 1

[Hence, for x = -1 we get y = 1]

Let us consider the value of ‘x’ as ‘1’.

w1 = -1 and w3 = 1

vdd = -1

y1 = 1 x (-1)

y1 = -1

y2 = (-1) x 1

y2 = -1

y1 = -1 which is less than ‘0’ therefore p = -1

Now, w2 = 1 and w4 = 1

vss = 1

y3 = 1 x 1

y3 = 1

y4 = 1 x 1

y4 = 1

y3 = 1 therefore q = -1

Now p = -1 and q = -1

w5 = 1 and w6 = 1

Applying perceptron learning rule:

y_out = p*w5 + q*w6

y_out = (-1 x 1) + (-1 x 1)

y_out = -2 which is < 0 therefore y = -1

[Hence, for x = 1 we get y = -1]

III. AND-Gate using CMOS and Equivalent ANN

In Figure 2, an ANN has been developed which can replace an AND gate. The ANN given in

the figure has been developed using CMOS, where ‘x1’ and ‘x2’ are the inputs of ANN and

‘y’ is the output. ‘T1’, ‘T2’, ‘T3’ and ‘T4’ are the artificial neurons which replace four

transistors of the CMOS AND gate. ‘x1’ and ‘Vdd’ are the inputs of ‘T1’ with weights ‘w1’

and ‘w2’ and output of the neuron is ‘t1’. ‘x2’ and ‘Vdd’ are the inputs of ‘T2’ with weights

‘w8’ and ‘w7’ and output of the neuron is ‘t2’. ‘x1’ and ‘t1’ are the inputs of ‘T3’ with weights

‘w3’ and ‘w4’ and output of the neuron is ‘t3’. ‘x2’ and ‘t3’ are the inputs of ‘T4’ with weights

59

‘w5’ and ‘w6’ and output of the neuron is ‘t4’. Another neuron ‘R’ is used which is also called

the referee neuron. ‘t1’ and ‘t2’ are the inputs of ‘R’ with weights ‘w9’ and ‘w10’ and output of

the neuron is y’, which is presented to an ANN CMOS NOT gate to generate the output of

the ANN CMOS AND gate.

The transistors ‘T1’ and ‘T2’ are reverse biased so the weights of the ‘xi’ inputs ‘w1’ and ‘w8’

are set to ‘-1’ and weights of ‘vdd’ inputs ‘w2’ and ‘w7’ are also set to ‘-1’. The transistors

‘T3’ and ‘T4’ are forward biased so the weights of the ‘xi’ inputs ‘w3’ and ‘w5’ are set to ‘1’

and other weights ‘w4’, ‘w6’, ‘w9’ and ‘w10’ are also set to ‘1’.

T1 T2

T3

T4

R
ANN CMOS

NOT GATE

x1

x2

vdd

y’

y

w1

w2

t1

w3

w4

w6

w5

w8

w7

w10

w9

t2

t3

t4

Figure 2: ANN AND-Gate using CMOS

For the transistors T1, T2, T3, T4 and R, the outputs are calculated as given in the following

equations:

tout1 = x1*w1 + vdd*w2 ….Equation 1

t1 = f(tout1) ….Equation 2

where, f = { 1 if tout1 >= 0 else -1}

60

Similarly,

tout2 = x2*w8 + vdd*w7 ….Equation 3

t2 = f(tout2) ….Equation 4

tout3 = x1*w3 + t1*w4 ….Equation 5

t3 = f(tout3) ….Equation 6

tout4 = x2*w5 + t3*w6 ….Equation 7

t4 = f(tout4) ….Equation 8

y’out = t2*w10 + t1*w9 ….Equation 9

y’ = f(y’out) ….Equation 10

Table 2 displays the weight matrix for ANN-CMOS AND gate for different possible inputs of

an AND gate. Table 3 displays the truth table of ANN-CMOS AND gate.

IV. OR-Gate using CMOS and Equivalent ANN

In Figure 3, an ANN has been developed which can replace an OR gate. The ANN given in

the figure has been developed using CMOS, where ‘x1’ and ‘x2’ are the inputs of ANN and

‘y’ is the output. ‘T1’, ‘T2’, ‘T3’ and ‘T4’ are the artificial neurons which replace four

transistors of the CMOS OR gate. ‘x1’ and ‘vdd’ are the inputs of ‘T1’ with weights ‘w1’ and

‘w2’ and output of the neuron is ‘t1’. ‘x2’ and ‘vdd’ are the inputs of ‘T2’ with weights ‘w3’

and ‘w4’ and output of the neuron is ‘t2’. ‘x1’ and ‘vdd’ are the inputs of ‘T3’ with weights

‘w5’ and ‘w6’ and output of the neuron is ‘t3’. ‘x2’ and ‘vdd’ are the inputs of ‘T4’ with

Table 2: Weight Matrix for ANN-CMOS AND gate

x1 x2 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

-1 -1 -1 -1 1 1 1 1 -1 -1 1 1

-1 1 -1 -1 1 1 1 1 -1 -1 1 1

1 -1 -1 -1 1 1 1 1 -1 -1 1 1

1 1 -1 -1 1 1 1 1 -1 -1 1 1

Table 3: Truth Table for ANN-CMOS AND gate

x1 x2 t1 t2 t3 t4 y’ y

-1 -1 1 1 1 1 1 -1

-1 1 1 -1 1 1 1 -1

1 -1 -1 1 1 1 1 -1

1 1 -1 -1 1 1 -1 1

61

weights ‘w7’ and ‘w8’ and output of the neuron is ‘t4’. Another neuron ‘R’ is used which is

also called the referee neuron. ‘t3’ and ‘t4’ are the inputs of ‘R’ with weights ‘w9’ and ‘w10’

and output of the neuron is y, which generates the output of the ANN CMOS OR gate. The

transistors ‘T1’ and ‘T2’ are reverse biased so the weights of the ‘xi’ inputs ‘w1’ and ‘w3’ are

set to ‘-1’ and weights of ‘vdd’ inputs ‘w2’ and ‘w4’ are also set to ‘-1’. The transistors ‘T3’

and ‘T4’ are forward biased so the weights of the ‘xi’ inputs ‘w5’ and ‘w7’ are set to ‘1’ and

other weights ‘w6’, ‘w8’, ‘w9’ and ‘w10’ are also set to ‘1’.

 vdd

x1

x2

w1

w2

w3

R

w4

w6

T1

T2

T3

T4

w5

w7

w8

w9

w10

t3

t4

y

t1

t2

Figure 3: ANN OR-Gate using CMOS

For the transistors T1, T2, T3, T4 and R, the outputs are calculated as given in the following

equations:

tout1 = x1*w1 + vdd*w2 ….Equation 1

t1 = f(tout1) ….Equation 2

Where, f = { 1 if tout1 > 0 else -1}

Similarly,

tout2 = x2*w3 + vdd*w4 ….Equation 3

t2 = f(tout2) ….Equation 4

tout3 = x1*w5 + vdd *w6 ….Equation 5

62

t3 = f(tout3) ….Equation 6

tout4 = x2*w7 + vdd *w8 ….Equation 7

t4 = f(tout4) ….Equation 8

yout = t4*w10 + t3*w9 ….Equation 9

y = f’(yout) ….Equation 10

Where, f’ = {1 if tout1 >= 0 else -1}

Table 4 displays the weight matrix for ANN-CMOS OR gate for different possible inputs

of an OR gate. Table 5 displays the truth table of ANN-CMOS OR gate.

V. Discussion

This paper is an approach to design the ANN models for basic logic gates. These basic logic

gates designed using ANN models are based on CMOS circuits. These ANNs are simple Self

Organizing Maps (SOMs) which uses unsupervised learning. So the synaptic weighs are

fixed here. Some work has already been done in this field as discussed in the introduction but

the work in this paper very simple circuits are developed. Keeping the circuit simple makes

the circuits easy to implement. This approach can be used to simplify complex circuits in

future. This approach is slightly deviated from the overall functioning and design of CMOS

gates. A similar approach has been done in another paper which is more similar to CMOS

gate.

Table 4: Weight Matrix for ANN-CMOS OR gate

x1 x2 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

-1 -1 -1 -1 -1 -1 1 1 1 1 1 1

-1 1 -1 -1 -1 -1 1 1 1 1 1 1

1 -1 -1 -1 -1 -1 1 1 1 1 1 1

1 1 -1 -1 -1 -1 1 1 1 1 1 1

Table 5: Truth Table for ANN-CMOS OR gate

x1 x2 t1 t2 t3 t4 y

-1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 1 1

1 -1 -1 -1 1 -1 1

1 1 -1 -1 1 1 1

63

Now-a-days complex electronic circuits are simplified using VLSI design. This can be

done using CMOS circuits. Lot of work has already be done on ANNs. ANNs try to model

human brain using artificial neurons. These neurons take binary inputs and produce binary

outputs. If the CMOS circuits can be designed using ANNs, the circuits can be further

simplified by software implementation. Complex circuits are expensive. Simple circuits can

be designed which are less expensive. Complex functions can be carried out by ANN models

and these models can be mapped to simple circuits.

VI. Conclusion

The approach in this paper is to develop simple circuits to design basic logic gates using

CMOS. The use of CMOS circuits is used in many devices now days. ANNs are also

becoming popular. This approach will lead to the development of simple circuits and also the

hardware implementation of the ANN models will become simple with the advancement of

this technology. Approach here is to initiate the work to map simple CMOS hardware circuits

with ANN models which can solve complex problems. The work can be started by simply

modeling logic gates with ANN. This paper is an approach to design the basic gates applying

this logic.

References

[1.] L. Fausett, “Fundamentals of Neural Networks, Architectures, Algorithms and

Applications”, Pearson Education, India, 2009.

[2.] G.N. Swamy, G. Vijay Kumar, “Neural Networks”, Scitech, India, 2007.

[3.] Ashutosh Aggarwal, Rajneesh Rani, RenuDhir, “Handwritten Devanagri Character

Recognition using Gradient Features”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2, Issue 5, May 2012, pp. 85-90.

[4.] Sandeep, Saha, Nabarag Paul, Sayam Kumar Das, Sandip Kundu, “Optical Character

Recognition using 40-point Feature Extraction and Artificial Neural Network”,

International Journal of Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 4, April 2013, ISSN 2277 128X, pp. 495-502.

[5.] Ali Borji, Mandana Hamidi, Fariborz Mahmoudi, “Robust Handwritten Character

Recognition with Features Inspired by Visual Ventral Stream”, © Springer

Science+Business Media, LLC. 2008, published online (31 August 2008), pp. 97-111.

64

[6.] Y Perwej and A Chaturvedi, “Neural Networks for Handwritten English Alphabet

Recognition”, International Journal of Computer Applications, Volume 20, No. 7, pp. 1-5,

2011.

[7.] Frye R C, Rietman E A, and Wong C C, “Back-propagation learning and non idealities in

analog neural network hardware,” Neural Networks, IEEE Transactions on, vol. 2, no. 1,

pp. 110–117, 1991.

[8.] Jung S and Kim S S, “Hardware implementation of a real-time neural network controller

with a dsp and an fpga for nonlinear systems,” Industrial Electronics, IEEE Transactions

on, vol. 54, no. 1, pp. 265–271, 2007.

[9.] Hikawa H, “{FPGA} implementation of self organizing map with digital phase locked

loops”, Neural Networks, vol. 18, no. 56, pp. 514 – 522, 2005, {IJCNN} 2005. Available

Online: http://www.sciencedirect.com/science/article/pii/S0893608005001103

[10.] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F,

Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R,

Taba B, Amir A, Flickner M D, Risk W P, Manohar R, and Modha D S, “A million

spiking-neuron integrated circuit with a scalable communication network and interface”,

Science, Vol. 345, No. 6197, pp 668–673, 2014.

 Available Online: http://www.sciencemag.org/content/345/6197/668.abstract

[11.] Forssell M, “Hardware Implementation of Artificial Neural Networks”, 18-859E

Information Flow in Networks, pp 1-4.

“Available:http://users.ece.cmu.edu/~pggrover/teaching/files/NeuromorphicComputing.p

df”, (Accessed : 2016)

[12.] Yellamraju S, Kumari Swati, Girolkar S, Chourasia S and Tete A D, “Design of

Various Logic Gates in Neural Networks”, Annual IEEE India Conference (INDICON),

2013, Mumbai, India.

[13.] Hawas N M, Rekaby B K A, “ANN Based On Learning Rule of Neuron Activation

Function Using Electronic Devices”, International Journal of Advanced Computer

Technology (IJACT), Vol 4, No. 3, pp 19-22, 2015.

[14.] Kale N B, Padole V B, “Compression and Decompression of Signal Using CMOS

Technology...A Review”, International Journal of Advanced Research in Computer

Science and Software Engineering, Vol. 4, Issue 3, pp 53-55, 2014.

http://www.sciencedirect.com/science/article/pii/S0893608005001103
http://www.sciencemag.org/content/345/6197/668.abstract
http://users.ece.cmu.edu/~pggrover/teaching/files/NeuromorphicComputing.pdf
http://users.ece.cmu.edu/~pggrover/teaching/files/NeuromorphicComputing.pdf

65

[15.] Hui W, Dejang C, Wei Z, Ping Z, Yongsheng L, “Application of artificial neural

networks to segmented arc heather failure prediction”, AMSE Journals, Advances in

Modeling, Series B, Vol. 54-1, Issue 1, 2011, pp17-29.

