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Abstract 

The paper introduces a modified BL-GARCH (1, 1) model and the generalized student-t distribution 

with one skewness parameter and two tail parameters which offers the potential to improve our 

ability to fit the data in the tail regions which are critical to the risk management and other financial 

economic application. The paper evaluates the parameters of BL-GARCH (1, 1) and BL-GARCH (1, 

1)-Volume model from Gaussian and non-Gaussian frameworks. Our empirical observation of asset 

returns shows that squared returns are positively autocorrelated; the reversion of volatility to the 

mean; they exhibit excess kurtosis (the fourth moment of returns), or fatter tails, relative to a normal 

distribution.  
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1   Introduction  

Volatility modeling plays a critical role in mathematical finance and statistical applications. The 

ability to estimate and forecast volatilities for different assets and groups of assets leads to a better 

understanding of current and future financial risk. The GARCH family models attempt to capture the 

autocorrelation of squared returns, the reversion of volatility to the mean, as well as the excess 

kurtosis. The first and simplest model is an ARCH model Engle [6], which stands for Autoregressive 

Conditional Heteroskedasticity. The AR comes from the fact that these models are autoregressive 

models in squared returns, while the conditional comes from the fact that in these models, next 

period's volatility is conditioned on information of the current period. Heteroskedasticity means non-

constant volatility.  The stock returns have ‘heavy tails’ or ‘outliers prone’ probability distributions. 

One reason for outliers may be that the conditional variance is not constant, and the outliers occur 

when the variance is large. The return on an asset is 

ttt zr    

where )1,0(~
...


dii

tz  the residual return at time t, tr   as 
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In an ARCH(1) model, next period's variance only depends on last period's squared residual so a 

crisis that caused a large residual would not have the sort of persistence that we observe after actual 

crises. This has led to an extension of the ARCH model to a Generalized ARCH (GARCH) model   

Bollerslev [2], which is similar in spirit to an ARMA model. In a GARCH (1, 1) model, 
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  ttt   

Just like the ARCH model, the GARCH model can be extended to the GARCH (p, q) model as 

follows: 
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where   .,,2,1,0,,2,1,0,0 20 pjqi ji     These conditions on parameters 

ensure strong positivity of the conditional variance (1.2). The model is covariance stationary if  
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The exponential generalized autoregressive conditional heteroskedasticity (EGARCH) model Nelson 

[19] has a somewhat different intellectual heritage but imply particular forms of conditional 

heteroskedasticity. This model attracts a significant attention because it can capture not only the 

asymmetric variance effect but also relax the non-negativity constraints imposed on the coefficients 

by GARCH model. The asymmetric models provide an explanation for the so called leverage effect, 

that is, an unexpected price drop increases volatility more than an analogous unexpected price 

increase. The EGARCH (p, q) model put forward by Nelson [20] provides a first explanation for 

the 2

t , that depends on both size and the sign of lagged residuals. He proposed the following form 

for the evolution of the conditional variance: 
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where )1,0(~,222 Dzz tttt   , the parameters ij  ,,  are not restricted to be non-negative. 

The term itit zz    is positive if the error term is larger than its expected value and negative 

otherwise. The parameter   is the persistence of the volatility process that allows also for the 

volatility clustering feature. In empirical applications, this parameter is close to 1 even though it is 

assumed that 1 . This condition implies that the conditional variance process is stationary, 

condition that is inherited by the returns (Su et al [28], Yu [30], Tsay and Ruey [29], Zhu and Wang 

[31] and Zhu [31]). This parameter is in general negative because high volatility induces expectations 

of lower future returns. However, the recent uncovering of the relation between volatility and trading 
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volumes has led others such as Schwert [25], Gallant et al [8] as well as Jones et al [12] to propose 

an information-based variance model to explain the observed phenomenon. Najand and Yung [18], 

Locke and Sayers [13], Sharma et al [24], and Miyakoshi [15] showed that the current trading 

volume explain the persistence of variance represented by the ARCH-type effect. 

 

Following earlier work of Storti and Vitale [26] and adapting Mohler [16] nonlinear representation of 

bilinear model, the state space representation of a bilinear model (of order m) in the control theory 

literatures is of the general form 

        1)1()1()(  tt txCtxtx                              (1.5) 

             )(txt   

where the system matrix A and the input matrix B are square matrices of order )( mm ; the state 

vector x and the control vector   are column vectors of order )1( m . The input   is a usually 

unobservable random process and the systems coefficient matrices are to be estimated. 

 

If the paper nests the GARCH model and (1.5), the BL-GARCH model is given as 

                      tt ey                                                                                       (1.6) 
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                                 (1.7) 

Introducing the daily trading volume variable as additional information into the BL-GARCH model, 

we obtain a modified bilinear generalized autoregressive conditional heteroskedasticity-volume (BL-

GARCH (p, q)-Volume) model given as
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where 
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 p, q, r are non-negative integers with r = min(p, q), 2

t is the conditional variance of the process 

}{ t which only depends on past s'2  and s'2 , t  is a sequence of independent identically 

distributed elliptical random variables with mean zero and unit variance, D(0, 1), tz  is an 

independent, identically distributed random variable with mean zero and variance  unity and tv  is the 

daily trading volume, which is used as a proxy variable for the current information flow to the 

market.  

If c = 0, the model (1.7) reduces to the state space representation of the GARCH model. In this sense, 

the bilinear generalized autoregressive conditional heteroskedasticity model is an asymmetric 

extension of the symmetric generalized autoregressive conditional heteroskedasticity model.  
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If 0i , the model (1.8) reduces to the state representation of the BL-GARCH (p, q) model.  A 

positive i  suggests that the larger the information variable tv , the larger the conditional variance. If 

the information variable (the trading volume variable) has explanatory power, i  is expected to be 

positive and at the same time, either i  or j  (or both) should become smaller and statistically 

insignificant.  

 

2   Non-Gaussian Distributions with tail parameters 

Let the innovations Ztt )(  have a conditional non-Gaussian: 

(a)  The Student-t distribution  
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(b) The Generalized Student-t distribution 
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where  

  t , q is a complex number, 0, 21  . 1  and 2  are the left and right tail parameter 

respectively,  v  is the degrees of freedom. The standardized t deviate sxt /)(   has distribution 

t(0, 1, v),  where x is the observations,  is the mean and s is the standard deviation of the 

observations. 
 

Note: 0, 21   is a necessary condition because the probability density function must always be 

positive. Also the normalization constant  
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of (2.2) is real, because the integrand is a real function on ),(  . It is clear that if q = 0 in (2.2), 

the usual Student-t distribution is derived. Moreover, for q = 0, the normalization constant of 

distribution (2.2) is equal to the normalization constant of Student-t distribution. The kurtosis of the 

Student-t distribution is 
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which is greater than three if v . 

The MLE estimator ̂  maximizes the log-likelihood function tl   given by   
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we have the normal distribution, so that the smaller the value of v the fatter the tails.  
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tends to unity, while the right-hand bracket in (2.1) tends to 
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The score function is given   
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and the Hessian matrix is given by 
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The generalized student-t distribution with one skewness parameter and two tail parameters offers 

the study the potential to improve our ability to fit the data in the tail regions which are critical to the 

risk management and other financial economic application. This is because downward movement of 

the markets is followed by higher volatilities than upward movement of the same magnitude, see 

Muller and Yohai [17], Eraker et al [7], Gourieroux [9], Diongue et al [5], Onyeka-Ubaka [21]. So it is 

important to use BL-GARCH (1, 1) and   BL-GARCH (1, 1)-Volume models to capture asymmetric 

shocks to volatility. This distribution function will be acceptable if it converges to the probability 

density of the standard normal distribution. 

 

Preposition 2.1  

If ),,,,( 21 qvt  converges to the probability density of the standard normal distribution N(0, 1) as 

v , that is  

         )1,0,(),,,,(lim 21 tqvt
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then ),,,,( 21 qvt  is valid for the generalized student-t distribution. 

 

Proof 
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Taking limit, 
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Using dominant convergence theorem (DCT) and noting that the DCT states that if for a continuous 

and integrable function g(x), we have  
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Considering the limit relation (2.6), we obtain 
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This shows that the generalized student-t distribution converges to the normal distribution as the 

number of samples tends to infinity. 

This completes the proof. 

 

Preposition 2.2  

Let the process  }{ t   
be defined by (1.7) and let BL-GARCH (1, 1) be given as 
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then }{ t  
follows a distribution function. 

Proof 

From (1.7), it is obvious that the BL-GARCH (1, 1) processes are stationary if the process  }{ 2

t  is 

stationary.  The weak stationarity condition of the BL-GARCH (1, 1) model is constructed using a 

multiplicative specification of the BL-GARCH (1, 1) model, which is also convenient for the 

construction of the quasi-strict stationarity conditions:       

From (2.10), we have   
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where )(,/ 2

1 ktkkttt zGGz    , G0 = 1. The mean of the conditional variances in a BL-

GARCH (1, 1) model can directly be calculated from equation (2.12). Assuming normality, one has 
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So the unconditional variance becomes 
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(This condition is similar to the one given by Bollerslev [2] for stationarity solution of the GARCH 

(1, 1) process. Note that the stationarity condition is independent of 1c  and .1  

 

To calculate the variance of the conditional variances of the BL-GARCH (1, 1) model we need to 

know the third- and fourth-order moments of the distributions. Once these moments are known, it is 

again straightforward to calculate these variances and covariances. Assuming normality, one can 

derive that   
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Therefore, the variance of the conditional variances is given by  
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In the case of more general error distributions such as student-t and generalized student-t, the mean 

and variance of 2

t  can be calculated by using the moments of a standardized t-distributed random 

variable, z:    
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The covariance of  2

t  and 2

h  can be calculated using equations (2.12) and (2.16): 
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Let k be any finite positive integer. Then, when the distribution of }{ t  is generalized error, the 

second moment of }{ 2k

t is given by 
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It follows that all the factors in (2.22) are positive so we conclude that the BL-GARCH (1, 1) process 

has the so-called leptokurtic distribution.  If 0)))()(2(1( 2422   zz  and 

v > 2, the variances and covariances are finite and time independent. The BL-GARCH (1, 1) 

conditional variance process is covariance stationary. Hence, the proof.  

3    Empirical Study of Real Data 

Figure 1, 2, 3 and 4 detail plots of the series (daily stock prices of selected banks on the floor of the 

Nigeria Stock Exchange (2007-2011). The data plotted display a non-stationary pattern with a 

decreasing trending behaviour with higher variability and lower level of the stock values toward the 

sample period for First Bank of Nigeria (FBN), Guaranty Trust Bank (GTB) and Zenith Bank (ZEB) 

while the plot for the United Bank for Africa (UBA) fluctuated, showed an upward trending 

behaviour toward the tail end of 2009 to 2010 and eventually fell in stock values at the end of the 

sample period.  
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The transformed data depict the continuously compounded daily returns of the selected banks. The 

plots show that the returns were more volatile over some time periods and became very volatile 

toward the end of the study period. This pattern of alternating quiet and volatile periods of substantial 

duration is referred to as volatility clustering. A visual inspection shows clearly, that the mean 

process for the different banks are not statistically significantly different from zero, but the variance 

changes over time, so the return series is not a sequence of independently and identically distributed 

(i.i.d.) random variables. A characteristic of asset returns, which is noticeable from the figures, is 

volatility clustering first noted by Mandelbrot [14]: “Large changes tend to be followed by large 

changes, of either sign, and small changes tend to be followed by small changes”.   
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To select a suitable stochastic model, the study follows the three iterative steps of identification, 

estimation and diagnostic checks recommended by Box and Jenkins [3], Box et al [4]. For model 

identification, the study plotted the autocorrelation functions, the partial autocorrelation functions, 

the inverse autocorrelation functions and the inverse partial autocorrelation functions for the 

1loglog  ttt ppy . The volatility clustering observed in selected return data gives us a hint that 

they may not be independently and identically distributed, otherwise the variance would be constant. 

If the series values are truly independent, then nonlinear instantaneous transformations such as taking 

logarithms, absolute values, or squaring preserve independence Onyeka-Ubaka and Abass [22]. 

However, the same is not true of correlation, as correlation is only a measure of linear dependence. 

Higher-order serial dependence structure in data can be explored by studying the autocorrelation 
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Fig. 5c: Sample ACF of UBA Squared  
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Fig. 5a: Sample ACF of FBN Squared 

                Return Data 
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structure of the squared returns (of greater sampling variability but with more manageability in terms 

of statistical theory). 

Although the ACF of the observed returns exhibits little autocorrelation, the ACF of the squared 

returns may still indicate significant correlation and persistence in the second-order moments. This is 

evident in the plots of the ACF of the squared returns in Figures 5a, b, c and d below.   

 

                      
 

The returns in Figure 5 show substantial evidence of GARCH effects (heteroskedasticity) as judged 

by the autocorrelations of the squared residuals. The first order autocorrelations of FBN and GTB are 

0.093 and 0.085, and they gradually decline to 0.023 and 0.011 respectively after 10 lags confirming 

that the fall in the prices of stock causes some shareholders to sell their shares before maturity while 

those of UBA fluctuates around zero and the ZEB gradually increase after 10 lags. The increase after 

lag 10 evinced that price volatility persists for a long period drawing the bank   stocks to have 

leverages. However, these autocorrelations are not large, but they are positive and very significant. 

This is an implication of the BL-GARCH (1, 1) model. Quantifying the preceding qualitative checks 

for correlation using formal hypothesis tests, such as the Ljung-Box-Pierce Q-test and Engle’s 

ARCH test, both functions return identical outputs. The test p-values shown in the third column are 

all zero, resounding rejecting the “no ARCH” hypothesis. The first output, H, is a Boolean decision 

flag. H = 0 implies that no significant correlation exists (that is, do not reject the null hypothesis). H 

= 1 means that significant correlation exists (that is, reject the null hypothesis). The remaining 

outputs are the p-value (pValue), the test statistic (Stat) and the critical value of the Chi-square 

distribution (CriticalValue). The results show that there is significant serial correlation in the squared 

returns when the researcher tests them with the same inputs. The results of the two tests and 

diagnostics estimates are summarized in Tables 1, 2 and 3 below:   
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Fig. 5d: Sample ACF of ZEB Squared 
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ACF 



30 

 

Table 1: Ljung-Box-Pierce Q-test 
Lag     H PValue Stat CriticalValue 

10 0.9991 0 1.4309 18.3070 

15 1.0000 0 2.1450 24.9958 

20 1.0000 0 3.6852 31.4104 
 

Table 2: Engle’s ARCH test 
Lag H PValue Stat CriticalValue 

10 0.9991 0 1.4389 18.3070 

15 0.9999 0 2.2313 24.9958 

20 1.0000 0 3.6407 31.4104 
 

 

Table 3: Diagnostics Estimates of the Selected Banks BL-GARCH (1, 1) Model 
Bank Jarque-

Bera 
P-Value 
(Chi^2) 

Skewness Kurtosis Log-lik AIC BIC 

FBN    Normal 
          Student-t 
     Gen. Student-t            

2876.1695 
2957.4381 
2976.1109 

0.0000 
0.0000 
0.0000 

-1.1861 
-2.1485 
-2.1306 

11.8227 
11.3241 
10.7983 

1835.17 
1839.40 
1839.28 

2531.90 
2070.86 
2147.39 

2542.81 
2037.11 
2137.04 

GTB  Normal 
          Student-t 
     Gen. Student-t 

6806.3915 
6813.8694 
6813.8209 

0.0000 
0.0000 
0.0000 

-1.8134 
-1.6518 
-1.7502 

16.5783 
21.6132 
21.8794 

1831.09 
1841.76 
1841.25 

2651.24 
2348.59 
2316.46 

2673.41 
2318.67 
2358.27 

UBA     Normal 
          Student-t 
     Gen. Student-t 

2857.1063 
2897.4356 
2897.3722 

0.0000 
0.0000 
0.0000 

-2.9160 
-3.7821 
-3.6735 

31.1992 
33.2867 
33.2794 

1829.23 
1832.69 
1832.14 

3542.70 
3576.87 
3572.09 

3560.13 
3592.10 
3592.03 

ZEB     Normal 
          Student-t 
     Gen. Student-t 

4034.3057 
4159.5378 
4159.5256 

0.0000 
0.0000 
0.0000 

-3.1875 
-3.4917 
-3.4907 

36.6163 
35.7580 
35.0812 

1815.87 
1822.94 
1822.01 

4631.30 
4628.19 
4625.07 

4640.47 
4634.89 
4634.66 

BL-GARCH(1,1)-V 
Gen. Student-t 

 
2918.3766 

 
0.0000 

 
-2.5051 

 
20.1601 

 
1822.72 

 
8345.07 

 
8729.46 

 

These tests show significant evidence in support of GARCH effects. Each of these extracts the 

sample mean from the actual returns. This is consistent with the definition of the conditional mean 

equation in which the innovations process is ttt y   , and t  is the mean of ty . Evidence of 

time dependence is found using Ljung-Box statistics, which is robust to heteroskedasticity and 

reported for autocorrelations up to 20 lags. The statistics show strong serial correlations in both 

levels of the return series. This is consistent with the results of Storvik [27], Johannes et al [11], 

Raggi and Bordignon [23], who found that serial correlations in DJIA returns are significant but 

unstable and depend on the sample period.  

A non- constant variance of asset returns should lead to a non-normal distribution. Figure 6 

represents the histogram and the student-t distribution of the stock market prices of the selected 

banks. Non-stationarity in the conditional variances is not the only possible source of non-

stationarity for stock return series. The level of stock prices and trading volume may also be non-

stationary. The volatile behaviour of the disturbances contradicts the assumption of normally 

distributed disturbances. The disturbances are therefore modelled with the BL-GARCH (1, 1) using 

generalized student-t distributed random variables with unknown common degrees of freedom. The 

increase in the variance does not occur when the disturbances are generalized student-t distributed 
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because with a lower value of the parameter   one can also explain occurrence of several rather 

large values of the disturbances, that is, heteroskedasticity. 

Histogram of FBN
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Fig. 6: Histogram and Student-t Distribution of the Selected Banks  

 

Figure 6 shows evidence of fat tails since the kurtosis is positive and evidence of skewness, which 

means that the tails are either heavier or lighter than the usual student-t distribution. Looking at the 

plot of GTB stock prices, the student-t distribution tends to infinity. This prompts the study to use the 

generalized student-t distribution to capture the extreme values. Kurtosis and the narrow bands in 

plot are hints of conditional heteroskedasticity. These models, although able to capture the 

leptokurtosis, could not account for the existence of non-linear temporal dependence as the volatility 

clustering observed from the data. The Jarque-Bera (JB) test decisively rejects the normal 

distribution (see Table 3). The JB test is a test statistic for testing whether the series is normally 

distributed. The test statistic measures the difference of the skewness and kurtosis of the series with 

those from the normal distribution.  

             Jarque-Bera   =  
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where S is the skewness, K is the kurtosis, and k represents the number of estimated coefficients used 

to create the series. Under the null hypothesis of a normal distribution, the JB statistic is distributed 

as 2 with 2 degrees of freedom.  

 

The data was estimated by methods of the Maximum Likelihood Estimator (MLE) using MATLAB 

(R2008b) soft ware.  The parameter estimates are presented in Tables 4, 5 and 6 below:  

Table 4: Conditional Variance GARCH (1, 1) Model Parameter Estimation Results 

 
             0̂  

             1̂  
            1̂                

v̂  

Gaussian -0.2189          0.03281* 

(0.01973,   -11.0948) 

0.1732          0.01055* 

(0.00924,   18.7446) 

0.9215            0.00683* 

(0.01387      66.4384)   

- 

Student-t -0.2803         0.03218*    

(0.03041,      -9.2174) 

0.3805        0.04163*   

(0.0479,       7.9436) 

0.9391            0.05061* 

(0.05713,     16.4379) 

3.2496         0.00934* 

( 0.1106     29.3816) 

Gaussian 1.8145e-005     0.02756*   0.1750           0.00385*   0.8243             0.00194*  - 
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FBN (2.4118e06,    7.5234)  (0.01721,  10.1685)  (0.01371,    60.1240) 

Student-t 

 FBN 

2e-007              0.03471*      

 (5.2309e-008,   0.8234) 

0.3634       0.00317*    

(0.04007,    9.0691) 

0.6365             0.00513*  

 (0.01941,    32.7924) 

2.3682         0.02716*         

(0.10355,   22.8701)     

Gaussian   

GTB
 

0.0006            0.03538* 

(6.7353e-005,   8.5820) 

0.0642           0.01730* 

(0.07362,    0.8720) 

0.5510             0.06719* 

(0.04693,     11.7409) 

- 

Student-t 

GTB 

0.0001            0.05983* 

(3.027e-005,    -3.3940) 

0.3621           0.04752*  

(0.07485,     4.8377) 

0.5951             0.07683* 

(0.06528,     9.1161) 

6.2527         0.05423* 

(0.69364,    9.0143) 

Gaussian 

 UBA 

0.0002            0.03795* 

(1.950e-005,    -7.9737) 

0.2924           0.00975* 

(0.04097,    7.1369) 

0.7065           0.01709* 

(0.03558,    19.8567) 

- 

Student-t 

UBA 

2e-007              0.04189* 

(5.2013e-008,   3.8452) 

0.3799           0.01493*      

(0.04163,    9.1256) 

0.6201           0.00873* 

(0.02267,     27.3533) 

4.7919         0.03891* 

(0.28051,   17.0821)  

Gaussian 

 ZEB 

2.194e-005        0.05147* 

(2.1776e-006,   10.0754) 

0.2285           0.01756* 

(0.01069,     5.4888) 

0.7714           0.01642* 

(0.00890,      86.6742) 

- 

Student-t 

ZEB 

2e-007           0.04297* 

(5.9104e-008,    3.3838) 

0.3081           0.00798*  

(0.03615,     8.5228) 

0.6918            0.01587* 

(0.02081,    33.2436) 

4.6334       0.03476* 

(0.31416,   14.7485) 
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Table 5: Conditional Variance BL-GARCH (1, 1) Model Parameter Estimation Results 

 

             0̂  
             1̂  

              1̂                1ĉ               v̂  
1̂  1̂  

Gaussian -0.2950         0.01842* 

(0.01292,    22.4458) 

0.2832          0.00352* 

(0.00823,   34.4107) 

0.9511            0.01065* 

(0.01937    49.1017)   

-0.0118      0.00537*             

(0.00568,    -2.0775) 

-   

Student-t -0.3002         0.02178*    

(0.05049,    -5.9457) 

0.4051          0.00413*   

(0.02279,    17.7753) 

0.9238            0.00683* 

(0.07014,    13.1708) 

-0.1036      0.01075*     

(0.01773,  -5.8432) 

3.3429        0.03937* 

( 0.15028   22.2443) 

  

G. Std-t -0.3106         0.00572* 

(0.04512,     -6.8839)   

0.3916          0.00294* 

(0.02187,     17.9058)    

0.9162            0.00158* 

(0.05218     17.5585)         

-0.5314      0.02416* 

(0.08023,   -6.6235) 

3.5841        0.01927* 

(0.17209,    20.8269)    

20.3 17.1 

Gaussian 

FBN 

1.8145e-005     0.02481*    

(2.4118e06,    7.5234) 

0.17507        0.00322*     

(0.017201,   10.1778) 

0.82493          0.00723*   

(0.013713,     60.1560) 

0.00591      0.00537*             

(0.05316,   0.1112)    

-   

Student-t 

FBN 

2e-007          0.02178* 

(5.2309e-008,  0.8234) 

0.3634          0.00318*   

(0.04007,    9.0691) 

0.6765            0.00659*     

 (0.01941,      34.8531) 

-0.0856      0.01075* 

(0.01575,  -5.4349) 

2.0682        0.05137*        

(0.1035,    19.9826)     

  

G. Std-t 

FBN 

2e-005          0.03217* 

(5.1308e-008, 0.8234) 

0.3831          0.00594*   

(0.04107,    9.3279) 

0.6483            0.06253*     

 (0.02394,      27.0802) 

-0.0880      0.01075* 

(0.01455,  -6.0481) 

2.5618        0.05137*        

(0.1065,    24.05446)     

24.4 10.8 

Gaussian

GTB
 

-3.7376        0.02338* 

(0.69453,    -5.3815) 

0.7452          0.00813*    

(0.04746,   15.0695) 

0.4548           0.05247*   

(0.09867,      4.6103) 

-0.0760      0.05327* 

(0.03834,  -1.9823) 

-   

Student-t 

GTB 

-1.1341        0.02057* 

(0.29667,    -3.8226) 

0.4904          0.05164*  

(0.07519,    6.5221) 

0.8391           0.06945*  

(0.04146,     2.0239) 

-0.0283      0.06197*         

(0.05117,   -5.5306) 

2.2948        0.36092*  

(0.74276,   3.0896) 

  

G. Std-t 

GTB 

-3.1893        0.02178* 

(0.36262,    -8.7952) 

0.5190          0.01006*  

(0.05761,    9.0089) 

0.4398           0.05352*  

(0.01567,     28.0664) 

-0.0980      0.05169*         

(0.05212,   -1.8803) 

7.8974        0.06673*  

(0.84215,   9.3778) 

18.4 7.8 

Gaussian 

UBA 

-1.8027        0.04358* 

(0.13484,    -13.3690) 

1.0215          0.01062*  

(0.05546,    18.4191) 

0.7333            0.01965*       

(0.01753,     41.8311)   

-0.1560      0.00951* 

(0.03737,   -4.1745) 

-   

Student-t 

UBA 

-0.4415        0.03761* 

(0.09842,     -4.4859 ) 

0.4915          0.00923*        

(0.04615,   10.6501) 

0.94166          0.00714*  

(0.01326,     71.0078) 

-0.1234      0.00714* 

(0.03633,   -3.3966) 

2.1625        0.03637*  

(0.31338,   6.9006)  

  

G. Std-t 

UBA 

-0.6134        0.02516* 

(0.18793,   -3.2640 ) 

0.4257          0.00623*        

(0.06183,    6.8850) 

0.8419            0.00412*  

(0.03128,      26.9150) 

-0.1760      0.01398* 

(0.02904,   -6.0606) 

5.9763        0.03637*  

(0.52160,   11.4576)  

20.9 14.0 

Gaussian 

ZEB 

2.194e-005     0.05329* 

(2.1776e-006,  10.0754) 

0.2285          0.01067* 

(0.01069,    21.3751) 

0.7717            0.01594* 

(0.00894,     86.3199) 

-0.0294      0.01553* 

 ( 0.03008,  -0.9774) 

-   

Student-t 

ZEB 

2e-007            0.04087* 

(5.9104e-008,  3.3838) 

0.3081          0.00771* 

(0.03615,    8.5228) 

0.6918            0.01439* 

(0.02081,    33.2436) 

-0.0189      0.03369*   

(0.02644,    -0.7148) 

3.6334        0.05213* 

(0.31416,   11.5654) 

  

G. Std-t 

ZEB 

2e-005          0.02106* 

(5.8104e-008,  4.3927) 

0.3176          0.01194* 

(0.025809,   12.3058) 

0.6543            0.00339* 

(0.02167,     30.1938) 

-0.0297      0.03369*   

(0.01962,   -1.5138) 

5.6735        0.00168* 

(0.40267,   14.0897) 

24.1 13.5 

 

 

 

Table 6: Conditional Variance BL-GARCH (1, 1)-Volume Model Parameter Estimation Results 

 
             0̂              1̂                1̂              1ĉ              v̂      ̂  
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Gaussian -0.2858        0.01482* 

(0.01290,     22.1550) 

0.2532      0.00235* 

(0.00852,  29.7183) 

0.7312          0.01060* 

(0.01937     37.7491)   

-0.0187      0.00157*             

(0.00569,  -3.3393) 

-  

Student-t -0.2902         0.02117*    

(0.05091,    -5.7003) 

0.3815      0.00514*   

(0.02973,   12.8322) 

0.6526          0.00782* 

(0.00719,    90.7650) 

-0.1033     0.01170*     

(0.01746,  -5.9164) 

4.3429          0.03639* 

( 0.56028      8.6373) 

0.2853 

Gaussian 

FBN 

1.9145e-005     0.02081*    

(2.4018e06,    7.5234) 

0.1751        0.00332*     

(0.01901,    9.2109) 

0.8543           0.00423*   

(0.01371,     62.3122) 

-0.0951  0.00532*             

(0.06345,   -1.4988)    

-  

Student-t 

FBN 

2e-007            0.02079* 

(5.2309e-008, 0.8234) 

0.3019        0.00372*   

(0.0410,     7.3634) 

0.6167          0.00635*     

 (0.01915,      32.2037) 

-0.0872      0.01093* 

(0.01575,  -5.5365) 

2.3872        0.04187*        

(0.10355,   23.0536)     

-0.1697 

Gaussian

GTB
 

-3.7376        0.02208* 

(0.60534,    -6.1579) 

0.6723       0.06101*    

(0.04746,   14.1656) 

0.3148          0.05042*   

(0.08653,      3.6380) 

-0.0763     0.05207* 

(0.03845,  -1.9844) 

-  

Student-t 

GTB 

-1.3415        0.02152* 

(0.26796,    -5.0063) 

0.6398       0.06715*  

(0.07198,   8.8886) 

0.3809          0.06105*  

(0.04156,      9.1651) 

-0.0820      0.06170*         

(0.05172,    -1.5855) 

6.2948         0.30012*  

(0.74276,     8.4749) 

0.5242 

Gaussian 

UBA 

-1.8027        0.03548* 

(0.15328,    -11.7608) 

0.2215       0.01072*  

(0.09147,    2.4216) 

0.8203          0.01826*       

(0.07952,     10.3156)   

-0.1605      0.00981* 

(0.06713,    -2.3909) 

-  

Student-t 

UBA 

-0.4417        0.02571* 

(0.09842,    -4.4879 ) 

0.4125        0.05823*        

(0.06154,    6.7030) 

0.8260           0.05018*  

(0.07613,      10.8499) 

-0.1432      0.04063* 

(0.07633,  -1.8761) 

3.6125         0.03117*  

(0.3133,     11.5304)  

0.2389 

Gaussian 

ZEB 

2.204e-005     0.05409* 

(2.1806e-006,  10.0754) 

0.2285        0.01167* 

(0.03198,    7.1451) 

0.7714          0.01395* 

(0.02899,     26.6092) 

-0.02319    0.01652* 

 ( 0.05138   -0.4513) 

-  

Student-t 

ZEB 

2e-006         0.04182* 

(5.8903e-008,  2.8398) 

0.3082        0.00817* 

(0.06158,    5.0049) 

0.6738          0.01039* 

(0.05218,    12.3130) 

-0.0189      0.02136*   

(0.02644     -0.7148) 

4.8231         0.01273* 

(0.36432,    13.2386) 

0.0956 

 

where 

 The asterisks (*) are the P-values of the estimated parameters. 

 The values in parenthesis, say (a, b), are the standard errors and t-statistics respectively. 

Tables 4, 5 and 6 represent conditional variance GARCH (1, 1), BL-GARCH (1, 1) and BL-GARCH 

(1, 1)-Volume model parameter estimation results respectively. Results reveal that parameter 

estimates are satisfactory in that the standard errors are small and the t-statistic for GARCH 

parameters is high. It is clear from the analysis that estimate 1̂  and 1̂  in the BL-GARCH (1, 1) and 

BL-GARCH (1, 1)-Volume model are significant at the 5% level with the volatility coefficient 

greater in magnitude. Hence, the hypothesis of constant variance is rejected, at least within sample. 

Furthermore, the stationarity condition is satisfied for the three distributions, as 1ˆˆ
11    at the 

maximum of the respective log-likelihood functions. The estimated asymmetric volatility response 

1ĉ  is negative and significant for all models except for GTB confirming the usual expectation in 

stock markets where downward movements (falling returns) are followed by higher volatility than 

upward movements (increasing returns).  The results also follow the empirical findings of Storti and 

Vitale [26], in that the kurtosis strongly depends on the leverage-effect response parameter. The 

results for statistics indicate that the BL-GARCH (1, 1) as well as the GARCH (1, 1) processes is 

appropriate for modelling the conditional variance of the selected banks return. However, the 
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goodness-of-fit statistics as well as the residuals diagnostics indicate that the BL-GARCH (1, 1) 

performs better in describing the conditional variance of the selected banks return. Moreover, the 

possible usefulness of using fat-tailed innovations for the GARCH (1, 1) and BL-GARCH (1, 1) 

models seem to be confirmed by the log-likelihood values and the AIC in Table 3. Using Akaike [1], 

the BL-GARCH (1, 1) model with minimum AIC was selected as the best. 
 

The BL-GARCH (1, 1) conditional variance model that best fits the observed data is 

 11

2

1

2

1

2 5314.09162.03916.03106.0   ttttt   

where 

 
5314.0

9162.0)1(ˆ,3916.0)1(ˆ,3106.0ˆ

1

110





effectleveragecand

RCGRC 

  

The model for individual bank estimates are given as  

 11

2

1

2

1

0072 0856.06765.03634.02 

  ttttt e 
            ………      FBN 

 11

2

1

2

1

2 0980.04398.05190.01893.3   ttttt 
       ………     GTB 

 11

2

1

2

1

2 1760.08419.04257.06134.0   ttttt 
       ………      UBA 

11

2

1

2

1

0052 0297.06543.03176.02 

  ttttt e 
             ……….      ZEB

 

From the results obtained, the BL-GARCH (1, 1) model with generalized student-t distribution fits 

GTB,  UBA and ZEB data better while the First Bank of Nigeria data follows the student-t BL-

GARCH (1, 1) model.  This is because adding more parameters in modelling the FBN data does not 

improve the parameter estimates of the FBN. The parameter   is therefore a good approximation of 

the degree up to which one is able to explain the variance/kurtosis of the disturbances.  The 

generalized student-t distribution of   for BL-GARCH conditional variances lies almost completely 

above 2.0 such that the conditional variances of the disturbances are finite.  In Table 6, the 

coefficients for trading volume variable,     is positive, greater than 0 and significant at 5% level for 

GTB, UBA and ZEB.  This analysis is suggesting that trading volume increases due to good news in 

the market. Coefficients   shows that a positive impact of volume on stock returns also generate less 

impact on volatility of the market. Thus, the inclusion of a trading volume variable in the variance 

process accounts for some of the observed GARCH persistence and asymmetric effect embedded in 

the volatility of returns for the sampled period. This analysis also shows that the three models: 

GARCH (1, 1), BL-GARCH (1, 1) and most importantly the BL-GARCH (1, 1)-Volume model 

explicitly established that the recent news of trading volume can be used to improve the prediction of 

stock price volatility in Nigeria banking sector and by extension any banks in the world. 

 

Conclusion 

This paper establishes: the bilinear generalized autoregressive conditional heteroskedasticity (BL-

GARCH) model capture empirical characteristics present in high frequency financial time series 

data; the evaluation of parameters of BL-GARCH (1, 1) and BL-GARCH (1, 1)-Volume model  from 
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Gaussian and non-Gaussian frameworks; leptokurtosis in banks’ stock returns. That is, the kurtosis of 

the selected banks’ stock returns exceeds the kurtosis of a standard Gaussian distribution, showing 

marginal distributions with heavier tails and thin centres; and strong volatility, persistence and 

asymmetry of the selected banks, so the inclusion of contemporaneous trading volume in the BL-

GARCH model results in a positive relationship between trading volume and volatility. The trading 

volume affects the flow of information, supporting the validity of the mixture of distributions 

hypothesis (MDH). The MDH provides an explanation for volatility and volume by linking changes 

in price, volume and the rate of information flow. The asymmetric effect of bad news on volatility is 

higher when contemporaneous trading volume is included, although market shocks, whether positive 

or negative, have similar effects on conditional volatility. Thus, we conclude that trading volume is a 

useful tool for predicting the volatility dynamics of the selected banks, and by extension other mega 

banks, in Nigeria. 
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