
1 

 

AMSE JOURNALS –2015-Series: Advances  D; Vol. 20; N° 1; pp 1-20 

Submitted Feb. 2015; Revised June 2, 2015; Accepted July 25, 2015 

 

A Systematic Survey on Automated Test Case Generation from UML 

Sequence Diagram Using GA and Other Approaches 

 

* T. Tamilarasi, ** M. Prasanna. 

 

*School Of Information Technology and Engineering, Research Associate, 

VIT University, India, Vellore-632014, (tamilarasi.tarasu@vit.ac.in) 

**School Of Information Technology And Engineering, Associate Professor, 

VIT University, India, Vellore-632014. (prasanna.m@vit.ac.in) 

 

Abstract 

Software testing is the pre-eminent part of the software development life cycle process. 

Generating test cases is one of the challenging parts in software testing. Test cases are a set of 

conditions where a tester will test whether the system or an application is working as it is 

established to do. Test cases are often referred as test scripts, when they are collected into test 

suite. Test automation defines that the system should work based on the established 

functionalities that has been described. Genetic Algorithm is an adaptive search optimization 

technique which performs implicitly parallel search in a large solution space and manipulates 

simulation. The nature of GA is to perform testing of all competitive behavior of the solution 

space until a good behavior is evolved. This paper presents a survey on automated test case 

generation from UML sequence diagrams using GA (Genetic Algorithm) and other techniques.  

Keywords: GA (Genetic Algorithm), Software Testing, Test Case, UML Sequence Diagram,        

Test Scripts, Test Suite. 

 

1. Introduction 

Software testing [27] is the process of evaluating a system or its components with the 

intent to find that whether it satisfies the specified requirements or not. Testing is an activity 

associated with any process that produces a product. Testing consumes 50% of the development 

budget. Testing is executing a system in order to identify any gaps, errors or missing 

mailto:prasanna.m@vit.ac.in


2 

 

requirements in contrary to the actual desire or requirements. William E. Perry [26] describes 

more about Software Testing. The course of software being tested in a well-planned way is 

known as Software testing life cycle. Figure-1 explains the life cycle of software testing. A test 

case is a set of conditions or variables under which a tester will determine whether a system 

under test satisfies requirements or work correctly. The process of developing test cases can also 

help find problems in the requirements or design of an application. A test case has components 

that describe an input, action or event and an expected response, to determine if a feature of an 

application is working correctly. A test case is basically a description of test. A good test case 

should have some characteristics which are: (i) it is reusable, (ii) should be accurate and tests 

what it is intended to test and (iii) it should be traceable to requirements. 

 

 

 

 

 

  

Figure 1: Software Testing Life Cycle Process

Jim Arlow et al [8] describes more about UML: The Unified Approach.  The Unified Modeling 

Language (UML) is a standard language for writing the blueprints of software. The UML may be 

used to visualize, specify, construct and document the artifacts of a software system. Here, we 

discuss about the behavioral aspects of the UML diagrams. Behavioral aspects are the dynamic 

parts of UML models, which represent behavior over time and space. UML Sequence diagram is 

an interaction diagram that emphasizes the time-ordering of messages. A Sequence diagram 

shows an interaction, consisting of a set of objects and their relationships, including the messages 

that may be dispatched among them. Graphically, a sequence diagram is a diagram that shows 

objects arranged in X axis and messages arranged along Y axis. Unlike sequence diagram, no 

other UML diagram shows the lifeline of objects explicitly. GA [29] is a search heuristic that 

traverses the process of natural selection. The meta-heuristic method is routinely used to generate 

useful solutions to optimization and search problems. On analyzing several approaches, GA 

technique serves as efficient enough as other techniques that are involved in automated test case 

generation. 

Contract Signing Requirements Analysis Test Planning Test Development 

Product Delivery  Retest Defects Defect Reporting Test Execution 

http://www.amazon.com/Jim-Arlow/e/B001H6IYRW/ref=sr_ntt_srch_lnk_12?qid=1412142726&sr=1-12


3 

 

2. Background 

In object-oriented software [28], the complexity of the software is not only associated 

with functions and procedures but also with how the procedures and classes are connected and 

how objects communicate. There are two kinds of aspects in UML: Structural aspects and 

Behavioral aspects. Structural aspects are the nouns of UML models. These are the static parts of 

a model, representing elements that are either conceptual or physical. Behavioral aspects are the 

dynamic parts of UML models. These are verbs of a model, representing behavior over time and 

space. A sequence diagram is basically a projection of the elements found in a message flow. The 

semantics of an interaction’s context, objects and roles, links, messages and sequencing apply to 

sequence diagrams. A sequence diagram emphasizes the time ordering of messages. There are 

several approaches have been proposed for test case generation from UML sequence diagrams. In 

this paper, survey has been done on the work carried out on behavioral aspects of UML sequence 

diagram using GA and other approaches.  

 

3. Genetic Algorithm: A Detailed Description 

Genetic algorithm is one such algorithm in evolutionary algorithm. GA is a search 

algorithm that is inspired by the way nature evolves species using natural selection of the fittest 

individuals. Franz Rothlauf [5] explains more about evolutionary algorithms like genetic 

algorithms. The possible solution to a problem is represented by the population of the 

chromosomes. A chromosome is a string of binary digits and each digit that makes up a 

chromosome is called a gene. The initial population can be totally random or can be created 

manually using processes such as greedy algorithm. GA uses three operators in its population 

namely: (i) Selection, (ii) Crossover and (iii) Mutation.  

 

3.1 Selection 

A selection scheme is applied to determine how individuals are chosen for mating based 

on their fitness. Fitness can be defined as a capability of an individual to survive and reproduce in 

an environment. Selection generates the new population from the old one, thus starting a new 

generation. Each chromosome is evaluated in present generation to determine its fitness value. 

The fitness value is used to select the better chromosomes from the population for the next 

generation. 

 

3.2 Crossover 



4 

 

After selection, the crossover operation is applied to the selected chromosomes. It 

involves swapping of genes or sequence of bits in the string between two individuals. The 

process is repeated with different parent individuals until the next generation has enough 

individuals. After crossover, the mutation operator is applied to a randomly selected subset of the 

population. 

3.3 Mutation 

Mutation alters chromosomes in small ways to introduce new good traits. It is applied to 

bring diversity in the population. 

 

4. Generating Test Case Using Genetic Algorithm 

A.V.K. Shanthi et al [1] describe automated test case generation by means of UML 

sequence diagram using Genetic algorithm with best test cases optimized and validated by 

prioritization. Their approach is significant to identify location of a fault in the implementation, 

thus reducing testing effort. Moreover their method for test case generation inspires the 

developers to improve the design quality, find faults in the implementation early, and reduce 

software development time. Figure-2 briefly explains the methodology of test case generation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A.V.K. Shanthi et al [1]  Methodology for test case generation

SOFTWARE 

DESIGN SEQUENCE 
EXTRACTING THE INFORMATION FROM 

MODEL FILE (.MDL) 

CONSTRUCTION OF DEPENDENCY TABLE 

GENERATION OF TEST PATH 

TEST CASES PRIORITISED 

APPLYING 

GENETIC 

ALGORITHM 



5 

 

Paramjit Kaur et al [15] describes about the various techniques to generate the test cases 

from the UML diagrams to test the software automatically. A new method is proposed in 

generating test cases by testing the software automatically using Genetic Algorithm Crossover 

Technique. Their technique will be applied on sequence diagram. Their method is coupled with 

mutation testing to check the effectiveness of the methodology. The results show that when 

Genetic Algorithm combined with mutation testing reveals 80% of the effectiveness in testing 

process. So that, the errors are validated in the design phase itself early in the development 

process stage. 

 

V. Mary Sumalatha et al [24] describes about the test case generation for object oriented 

software using UML diagrams like Sequence diagram. The proposed  methodology of  their 

paper is as follows: (i) Converting sequence diagram into Sequence Diagram Graph, (ii) 

Applying Genetic algorithm to sequence diagram graph, (iii) generate all paths between source 

and destination as loops, (iv) Calculate fitness value by calculating the probability of the 

individual, (v) To calculate the probability of the individual, select the individuals from the large 

initial population, (vi) produce new generation of solutions by generating random values , (vii) 

Perform crossover technique. (viii) Mutate if random value is less than 0.2 to obtain best test 

path, (ix) re-evaluate the fitness for new generation, (x) repeat the process until all paths between 

source and destination have been covered, (xi) best path is generated from this process. Figure-3 

describes steps involved in generating test cases using GA from UML Sequence Diagrams. 

 

Sangeeta Sabharwal et al [18] describe a technique to prioritize test case scenarios by 

identifying the critical path clusters using genetic algorithm. Their proposed technique has 

extended our previous work of generating test case scenarios from activity diagram by also 

considering the concurrent activities in nested activity diagram. Their technique involves three 

algorithms. Algorithm1 describes about test data generation by GA from activity diagram. 

Algorithm 2 is a procedure call for Algorithm1, where that algorithm traverses CFG which is 

generated from activity diagram. For each node in CFG, some weight has to be assigned. 

Algorithm2 is defined for assigning weights for those nodes in CFG. Algorithm 3 describes about 

test data generation by Genetic Algorithm (GA) from state chart diagram. 

 

M. Prasanna et al [12] describes a new model based approach for automated test case 

generation in object oriented systems using GA algorithm. This proposed approach involves the 

following steps: (i) Construct object diagram using rational rose software and store it with .mdl as 



6 

 

extension, (ii) Parse the .mdl file and capture the object names, (iii) Build a tree using object 

names and apply genetic algorithms cross over technique, (iv) New generation of trees are 

formed and convert it to binary trees, (v) Traverse new generation of binary trees using Depth 

First Search technique, (vi) All the valid, invalid and termination sequences of the application can 

be obtained using Step v. The effectiveness of the generated test conditions can be evaluated 

using a fault injection technique called Mutation Analysis Technique. It is a fault testing strategy. 

Programs with injected faults are tested and those faults are called mutants. The outcome of the 

mutation analysis is a measure named mutation score.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Paramjit Kaur et al [13]. Steps involved in generating test cases using GA 

from Sequence Diagrams 

 

Score = (Σ faults found / Σ faults injected) * 100---------------------------------------------- (1). 

 

Mutants are obtained by applying mutation operators that introduce the simple changes to 

original program. The faults are kept in separate versions of the program to avoid interactions 

SEQUENCE DIAGRAM 

GENETIC ALGORITHM 

GENERAL TREE 

TREE STRUCTURE 

TESTING SEQUENCE  

TESTING 

IMPLEMENTATION  

TESTING CONDITIONS 



7 

 

between faults such as masking. The mutation testing has yielded 80.3% effectiveness in 

generated test cases in this paper. Figure-4 describes the steps involved in generating test cases. 

 

Hirohide Haga et al [6] proposed a method that automatically generates software test 

cases based on mutation analysis and GA algorithm. Their proposed methodology include: (i) 

original test cases are generated randomly under the range of input data, mutants also generated 

from the code that is to tested, (ii) Evaluate the test cases based on its mutation score whether it is 

sufficient or not, (iii) the generated test cases are refined by GA algorithm if the mutation score is 

not sufficient, (iv) Generate High Quality Test Data. Figure-5 describes test case generation 

based on mutation score. 

 

5. Test Case Generation Approaches 

5.1 Random Approach 

Random approach is the simplest method for generating test cases. It has the lowest 

acceptable rate of generating test data. It does not generate quality test cases and does not 

perform well in coverage criteria. Random approach remains as benchmark among all in test case 

generation. 

 

5.2 Path wise Approach 

It is considered to be one of the best approaches in generating test cases. The approach 

does not generate by selecting multiple paths but it generate test cases for a specific path that it is 

intended to work on. By this, the approach reaches a specific knowledge about a specific path and 

achieves path coverage criteria. From the user, it requires two things: (i) Testing Program and (ii) 

Testing criteria, i.e. path coverage.  

 

5.3 Goal Oriented Approach 

It generates an input for any path from the entry to the exit for a block of code. This 

reduces the risk of generating test case for infeasible paths. The approach is followed in two 

methods: (i) Chaining Approach and (ii) Assertion method. Chaining Approach tries to identify a 

chain of nodes that are vital to the execution of goal node. It starts by execution of the input from 

the start node. Execution of each branch in the block of code decides the continuation of 

execution because the current branch does not lead to the goal node. The execution of the input 

continues in branches until it reaches the goal node. Search algorithms are used automatically to 



8 

 

change input to continue the flow of execution. Hence, it is named as chaining approach. 

Assertion method is an extension of chaining approach. The major advantage of this approach is 

that the execution of test case generation can be calculated in the other source rather than coding.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

 

Figure 4: M. Prasanna et al [10] Proposed Methodology for generating test cases from 

object diagrams using GA algorithm 

 

 

 

 

 

 

 
 

                                      

 

 

 

Figure 5: Hirohide Haga et al [5] test case generation using Mutation Analysis and GA 

Algorithm 

 

 

 

OBJECT 

DIAGRAM 

GENETIC 

ALGORITHM 

GENERAL TREE 

TREE 

STRUCTURE 

TESTING 

SEQUENCE 

SYSTEM 

IMPLEMENTATION 

TESTING 

CONDITIONS 

CODE TO BE 

TESTED 

RANGE OF 

INPUT DATA 

GENERATING 

MUTANTS 

RANDOM 

GENERATION 

EVALUATION BY 

MUTATION SCORE 

REFINEMENT OF 

GENERATED TEST CASES 

HIGH QUALITY 

TEST DATA 



9 

 

5.4 Intelligent Approach 

 

It will generate test cases quicker than other approaches but it analyses a wide range of 

programs that are quite complex. The test case generation method is coupled with the detailed 

analysis of the code.  

 

6. Techniques Involved In Automated Test Case Generation 

6.1 Generating Test Cases by Condition Slicing 

Ranjita Kumari Swain et al [17] describe test case generation using condition slicing and 

adequate test coverage criteria. Their approach comprises of the these steps: (i) Construction of 

the UML sequence diagram, (ii) Construction of dependency graph from the sequence diagram, 

(iii) Selection of conditional predicates from the sequence diagram, (iv) Computation of slices 

corresponding to each conditional predicate and (v) Generation of test data with respect to slicing 

criterion. Table-1 explains the test cases generation from slice condition. 

Table 6.1: Ranjita Kumari Swain et al [15] Test case Generation from UML Sequence 

Diagram using Condition Slicing 

 

S.NO SLICE CONDITION PREDICATES TEST CASES 

1 (6,s) s < 100 object1, [11,9], object2. 

2 (6,s) s < 100 object1, [10,10], object2. 

3 (7,m) m <= 120 object1, [120,7], object2. 

4 (7,m) m <= 120 object1, [121,7], object2. 

5 (7,m) m <= 120 object1, [119,7], object2. 

 

The advantage of their approach is, it satisfies high path coverage criteria whereas the 

disadvantage here is, if the sequence model diagram is large then the path coverage criteria 

becomes more complex. 

 

6.2 Generating Test Cases from Dependency Graph 

Santosh Kumar Swain et al [20] describe constructing use case dependency graph from 

use case diagram and concurrent control flow graph from sequence diagram for test sequence 

generation. Their technique can be used for integration and system testing accommodating the 

object message and condition information associated with use case scenarios. The test cases thus 



10 

 

generated are suitable for detecting synchronization and dependency of use cases and messages, 

object interaction and operational faults. The drawback here is that testing sequence of messages 

that are associated with sequence of use cases and look into the details of message sequences 

within the use case scenario makes integration testing more complex. 

 

6.3 Generating Test Cases with Complete Path Coverage Criteria 

Shanmuga Priya et al [23] describe about a model based testing approach from which the 

test paths are get automated and obtained during the development process. The objective of path 

coverage criteria is to ensure that whether all the independent paths are executed at least once. A 

software tester should get an idea that the test cases generated must cover these generated paths 

in order to ensure complete coverage of the code. Model based testing can test the system under 

test based on the information of the corresponding model. It may lead to missing any components 

during testing which makes bugs in the system under test. Their approach arise problem when the 

system under test does not match the system model.  

  

6.4 Generating Test Cases by Novel Technique 

Baikunda Narayan Baiswal et al [2] describe a test case generation approach which 

generates test cases by analyzing sequence diagrams and class diagrams of scenario, which 

achieves maximum path coverage criteria. Here they propose an approach called TC-ASEC 

approach, which generate test cases from UML design models using activity, sequence and class 

diagrams. They use gray box testing method which combines both black box testing and white 

box testing. They have covered path coverage criteria which have highest priority among all the 

coverage criteria for testing. Their approach is not fully automated. Since it supports reuse and 

defect analysis, their approach make more changes early in the development phase. 

 

6.5 Generating Test Cases Using Event Based Approach 

Sandeep Kumar Singh et al [19] presents an event based approach using events to 

generate test cases. Software models describe desired behavior of the system under test (SUT). 

Events taking place in SUT are proposed as Event Templates. The Event Flow Model is built 

from these Event Templates. This model is represented as Event Graphs. Their approach is very 

effective for real time systems since it is more logical rather than UML models. Their approach is 

independent of UML models and eliminates its necessity. The drawback here is linking 



11 

 

connections to the events is difficult. The event flow model construction is time consuming than 

UML models. 

6.6 Why Genetic algorithm is efficient than other approaches? 

M. Prasanna et al. [24] have proposed a method to automate the test case generation from 

sequence diagrams. The approach generates test cases for a sequence diagram of one real time 

application using Rational Rose Tool automatically. The test case generator converts all 

functionalities of the sequence diagram into a tree structure. Here, Genetic algorithm has also 

been discussed. Depth first search algorithm is applied. Then, the crossover technique is applied 

on the tree structures to identify the sequences. From the sequences, valid, invalid and terminate 

sequences are identified. The effectiveness of the testing is done by fault injection technique. The 

Methodology includes the following steps: (1) Analyze the Real system to be tested, (2) 

Construct sequence diagram using tool, (3) Convert model into tree structure, (4) Apply Depth 

first search and generate valid sequences, (5) Apply Crossover technique on all sequences, (6) 

Finally valid, invalid, and terminated test sequences are obtained from the new generation test 

sequences. This provides optimal way of generating test sequences from sequence diagram. This 

method achieves better and reliable test cases for object oriented applications.  

 

  

 

          Tree Crossover 

 

 

 

 

 

 

 

 

 

Figure 6: M. Prasanna et al. [21] Flowchart of proposed methodology 

 

 

 

Sequence diagram 

Genetic algorithm 

Testing conditions 

System Implementation 

Testing Sequences 

Tree structures 



12 

 

7. Discussion 

Karambir et al [9] describes different techniques involved in generating test case 

generation by analyzing the dynamic behavior of objects. The scope of their paper is to study the 

techniques of test case generation using genetic algorithm, test case generation by random based 

testing, test case generation using combination of activity and sequence diagram and test case 

generation using model based testing. First, test case generation using genetic algorithm are 

derived by analyzing the dynamic behavior of object oriented software. In order to propose test 

cases from the object diagram, Genetic algorithm tree cross over should be derived. By applying 

the genetic algorithm in the object diagram, test cases are get generated. Second, test case 

generation using random based testing which generates test cases by analyzing the application 

and making assumptions. Initially it combines a pool of objects into a set or a list. Then, it creates 

a method for those sets. Test will be done by selecting any set or list under the method and it 

executes the testing method. This can be continued until all sets assumed for that application gets 

tested under the testing method. In this way, the test cases are derived using random based 

testing. Third, test case generation by CPM (Category Partition Method) i.e., generating test case 

by combining both activity and sequence diagram. Their technique helps to reuse the design. It 

generates test scenarios from activity and sequence diagram which achieves path coverage 

criteria perfectly. Following this, the test cases are generated by analyzing the respective 

scenario. Finally, test case generation by model based testing technique is described, where it 

uses the black box testing approach. Model based testing automates the complete design of test 

cases and generate traceability matrix, which traces link between requirements and generated test 

cases. Instead of writing hundreds of test cases, the test designer constructs an abstract model of 

the system under test. The MBT tool is used to generate a set of test cases from that model.  

  

Li Bao Lin et al [10] describes a new test case approach where test cases are generated 

from UML sequence diagrams and Object Constraint Language (OCL). In their approach, a tree 

representation of sequence diagram is constructed. The conditional predicates are obtained by the 

traversal of the scenario tree. The conditional predicates are transformed into test data by 

applying function minimization technique. The test case generation process step include: (1) 

Converting sequence diagram into Scenario Tree, (2) According to the message path, distill the 

classes, attributes and operations, (3) Construct CCT( Class and Constraint Tuple) from OCL 

expressions, determine input data and generate test cases  and (4) execute the test cases an 

validate the test results. The advantage of this approach is, it generates effective test cases which 



13 

 

achieves path coverage, pre- and post- condition coverage and link coverage. The cons here are it 

generates more test cases since it achieves more coverage criteria. 

 

Santosh Kumar Swain et al [20] describes test case generation from Use case Dependency 

Graph (UDG) for use case diagrams and Concurrent Control Flow Graph (CCFG) for sequence 

diagrams. Their paper focuses on testing sequence of messages among objects of use case 

scenarios. The strategy derives test cases using full predicate coverage criteria. Some of the test 

adequacy criteria are also discussed. All-message-criteria (AMC) ensure all the messages 

between any two objects are tested at least once. All-path-coverage criteria (APC) ensure whether 

all the message paths are covered from start to end. Full-Predicate-Coverage criteria (FPC) 

ensure whether all possible combinations of the different predicates in the condition are checked. 

Condition Coverage Criteria (CC) covers all conditions in the graph. It includes all conditions as 

well as all loops. Branch-Coverage Criteria (BC) checks whether the set of test cases ensures at 

least one path covers the condition. Iteration Coverage Criteria (IC) requires all iterations to be 

covered once, twice and K times. The proposed approach derives use case dependency scenarios, 

derives test requirements from sequence diagrams and generates test cases for integration and 

system testing. The drawback here is, complexity of generating final test cases from sequences of 

use cases derived from sequence diagrams. 

 

Emanuela G. Cartaxo et al [4] describes the procedure about generating test cases from 

sequence diagram translated into labeled transition diagram. The systematic procedure is 

presented for functional test case generation for feature testing of mobile phone applications. 

Their procedure includes: (i) Obtaining Labeled Transition System (LTS) model for functional 

testing and (ii) Deriving test cases. For deriving test cases it is necessary to identify all paths from 

LTS. A path table can be derived by traversing the LTS model using Depth First Search 

Algorithm. The Condition Coverage for the systematic procedure is covered. Each path in that 

path table results in a test case. Their procedure become complex if the number of loops exceeds.  

 

Philip Samuel et al [16] describe test case generation using dynamic slicing approach. A 

message dependency graph is created from UML sequence diagram. Dynamic slicing approach is 

applied on MDG (Message Dependency Graph). Based on slice created from each message 

predicate, test cases are generated. For creating dynamic slices an Edge Marking method is used 

here. Their edge marking method uses program dependency graph. Edge marking algorithm is 

based on marking and unmarking the unstable edges appropriately as and when dependencies 



14 

 

arise and cease at run time. Their approach generates test case which satisfies all constraints 

corresponding to a slice. They have implemented a tool for automated test case generation 

namely UTG (UML Test case Generator). UTG has been implemented using Java and can easily 

integrate with any UML CASE tools like Magic Draw UML  that supports XML (Extensible 

Markup Language) format. Since UTG takes UML models in XML format as input, UTG is 

independent of any specific CASE tool. The Magic Draw UML tool is used in several UML 

designs which found effective in generating test cases. The generated test cases were found to 

achieve the desired coverage. This is platform dependent and Tool dependent. 

 

Baikunda Narayan Biswal et al [2] describes about test case generation from activity, 

sequence and class diagram of the scenarios, which achieves maximum path coverage criteria. 

Here, the proposed test case generation approach is named as TC-ASEC approach. In their 

proposed scheme, they use the method of gray box testing where it combines both white box 

testing and black box testing methods. Activity diagram gets parsed, where the test scenarios 

which satisfy path coverage criteria alone generates test cases. Among all other criteria, path 

coverage criteria have high priority which has been described here. After all test scenarios are 

generated test cases, class and sequence diagrams are generated from the test scenarios. Now by 

using Category Partition Method, analyze the system into functional requirements. For each 

functional unit of the system, its characteristics and parameters are identified. Then the test cases 

are generated based on its characteristics and parameters. Here the complete approach is done 

using JAVA Swing and Rational Rose software by implementing ATM case study. The approach 

is platform dependent and tool dependent. 

 

A.V.K. Shanthi et al [1] focus on test case generation by means of using Genetic 

Algorithm. The first step is to extract information from the sequence diagram of the given 

software design. For that a parser program in java is used to extract essential information from 

the sequence diagram. From the extracted information, a SDT (Sequence Dependency Table) is 

constructed.  Using SDT, test path is generated. By applying Genetic algorithm, test cases are get 

generated. Their approach generates best optimized test cases and validates test results by 

prioritization. 

 

Shanmuga Priya et al [20] describe a model based testing approach from which the test 

paths are automated and obtained before development process. The test cases are executed in 

fixing errors. The automated test paths will give an idea to a software developer for ensuring 



15 

 

whether all the paths are covered and coded properly. The proposed model based testing 

approach undergoes these steps: (i) Requirements Analysis, (ii) Design using UML Sequence 

Diagram, (iii) Generate Sequence Dependency Table, (iv) Generate Sequence Dependency Graph 

and (v) derive test paths. Their approach helps in generating test cases by tester during testing 

phase to check whether the system works as it is intended. 

 

Monalisa Sharma et al [14] describe the steps involved in the process of transformation of 

Sequence Diagrams (SD) into Sequence Diagram Graph (SDG) and then generating test cases 

from SDG. To create a SDG for any sequence diagram, identify the set of all operational 

scenarios. For each operational scenario, identify the set of all events. SDG contains the 

following data: attributes of the objects in that state, arguments in that state, range of values of all 

attributes in that state. Information that is obtained from data dictionary also stored in SDG. 

Finally, SDG is constructed considering the operational scenarios and set of data that are given as 

input. By covering all the paths from the start state to the end state in SDG graph, eventually 

covering all message paths as well as all interactions derive a test set. The test set thus generated 

achieves Path Coverage criteria. The generated test cases are based on event flow of operational 

scenarios. Generating event flows is very complex when operational scenarios are more. 

 

Monalisha Khandai et al [13] describes about a novel approach of test case generation for 

concurrent systems using UML Sequence Diagrams for ATM case study. Their approach consists 

of transferring Sequence Diagram into Concurrent Composite Graph (CCG). The CCG is 

traversed using graph traversing algorithms like Breadth First Search and Depth First Search 

algorithm to generate test cases for concurrent systems. Their approach is easier for ATM case 

study. It is not applicable for larger projects or any other systems.     

 

Saswat Anand et al [21] present an orchestrated survey of the techniques for automated 

test case generation of software systems. The survey includes techniques like test case generation 

by: (i) structural testing using symbolic execution, (ii) model based testing, (iii) combinatorial 

testing, (iv) random based testing and (v) search based testing. Their paper describes about all 

testing methods and test case generation by the above techniques but does not prove which 

method is efficient or easiest method among all methods.  

 

Jayanthy.S et al [7] have also describe about genetic algorithm in the work of pattern 

recognition. Their approach is to do power testing on crosstalk delay faults in VLSI circuits. This 



16 

 

technique deals with low power consumption and high fault coverage criteria. Automatic test 

pattern generation approach is proposed to test crosstalk delay faults that affects the timing 

behavior of the circuits. 

 

Liping Li et al [11] propose an automatic approach to generating test cases from UML 

activity diagrams based on Extension Theory. Through their approach the test cases generated not 

only satisfies test coverage criteria but also the number of test cases is decreased. Extenics is a 

new discipline to deal with contradiction problems with formalizing model and making novel 

decisions. Extenics theory when combines with engineering field solves more contradictory 

problems in various fields of information technology, automation, design and management, etc. 

To generate test cases from activity diagram by Extenics based theory, draw an activity diagram 

and refine XML file from the activity diagram. Construct Euler circuit for the activity diagram. 

Euler circuit is the most used graph problem in graph theory. Here the proposed method 

generates test cases from Euler circuit using Euler Circuit Algorithm. Constructing Euler circuit 

is complex and generating test cases from the algorithm is also complex. The advantage here is, it 

deals with contradictory problems and the number of test cases got decreased. 

 

Bhuvaneswari.M.C.et al [3] describes about testing of asynchronous circuits and 

synchronous circuits. Their approach presents that the test pattern generation from asynchronous 

circuit systems. The paper describes the abstraction of finite state synchronous vectors from the 

circuits which can be applied for testing. 

 

Wan-Hui Tseng et al [25] describes a model based scenario test case generation for 

nuclear safety systems. This was achieved by converting the scenarios described in natural 

language in a Safety Analysis Report to UML Sequence Diagrams based on proposed ontology 

design. Then, extract the initial environmental parameters and describe the operational sequences. 

Then perform variation on these systematic data to generate test cases. Their technique is 

completely applicable for real time systems.  

 

8. Conclusion 

The automated test case generation from UML Sequence diagrams using GA algorithm 

and several techniques has been reviewed. After analyzing, test case generation using 

Evolutionary Algorithms like Genetic algorithm is effective rather than any other technique. 

Since, the method of mutation analysis, evolutionary algorithms like Genetic Algorithm have 



17 

 

yielded 80.3% effectiveness in generating test cases. According to M. Prasanna et al. [21] GA 

provides optimal way of generating test sequences from sequence diagram. This method achieves 

better and reliable test cases for object oriented applications. Researchers use model based 

approach in which   genetic algorithm’s crossover technique is applied. But test case generation 

using other techniques does not apply fault injection technique. Since the use of evolutionary 

algorithms yields effectiveness in automated test case generation, it serves efficient than other 

approaches. 

 

9. References 

[1] A.V.K. Shanthi, Mohan Kumar, “Automated Test Cases From UML Sequence     Diagrams”, 

International Conference on Software and Computing Applications, Vol. 41, IACSIT Press, 

Singapore, 2012. 

 

[2] Baikuntha Narayan Biswal, Pragyan Nanda, Durga Prasad Mohapatra, “A Novel Approach 

for Scenario Based Test Case Generation”, International Conference on Information 

Technology, National Institute of Technology, IEEE Publication, Pages 244 - 247, 2009. 

 

[3] Bhuvaneshwari. M. C, Sivanandam. N. C, “Testing asynchronous sequential circuits using 

synchronous circuit model”, AMSE Journal, Modelling A, Vol.78, Issue 2, Page. 63,2005. 

 

[4] Emanuela G. Cartaxo, Francisco G. O. Neto and Patricia D. L. Machado, “Test Case 

Generation by means of UML Sequence Diagrams and Labeled Transition Systems”, IEEE 

Journal of Research, IEEE Publication,  Pages 1292-1297, 2007. 

 

[5] Franz Rothlauf, “Representations for Genetic and Evolutionary Algorithms 2nd Edition”, 

Springer Journal, 2010. 

 

[6] Hirohide Haga, Akihisa Suihiro, “Automatic Test Case Generation based on Genetic 

Algorithm and Mutation Analysis”, IEEE International Conference on Control System, 

Computing and Engineering, Pages 119-123, Penang, November 2012. 

 



18 

 

[7] Jayanthy.S, Bhuvaneswari.M.C, “An efficient multi-objective genetic algorithm for low 

power testing of crosstalk delay faults in VLSI circuits”, AMSE Journal, Advances B, Vol.54, 

Issue 2, Page 28, 2011. 

 

[8] Jim Arlow, Ila Neustadt, “UML 2 and the Unified Process: Practical Object-Oriented 

Analysis and Design (2nd Edition)”, Pages 77-81, 2005. 

 

[9] Karambir, Kuldeep Kaur, “Survey of Software Test Case Generation Techniques”, 

International Journal of Advanced Research in Computer Science and Software Engineering, 

Vol. 3, Issue 6, June 2013. 

 

[10] Li Bao-Lin, Li Zhi-shu, Li Qing, Chen Yan Hong, “Test Case automate Generation from 

UML Sequence diagram and OCL Expression”, International Conference on Computational 

Intelligence and Security, IEEE Publication, Pages 1048-1052, Harbin, China, December, 

2007. 

 

[11] Liping Li, Xingsen Li, Tao He, Jie Xiong, “Extenics-based Test Case Generation for 

UML Activity Diagram”, Elsevier Journal, Information Technology and Quantitative 

Management, Pages 1183-1193, 2013. 

 

[12] M. Prasanna, K.R. Chandran, “Automatic Test Case Generation for UML Object     

diagrams using Genetic Algorithm”, International Journal of Advance Soft Computing   

Applications”, Vol.1, No.1, Pages 19-32, July 2009. 

 

[13] Monalisa Khandai, Arup Abhinna Acharya, Durga Prasad Mohapatra, “A Novel 

Approach of Test Case Generation for Concurrent Systems Using UML Sequence Diagram”, 

IEEE 3rd International Conference on Electronics Computer Technology , Pages 157-161, 

Kanyakumari, India, April, 2011. 

 

[14] Monalisa Sarma, Debashish Kundu, Rajib Mall, “Automated Test Case Generation from 

UML Sequence Diagrams”, 15th International Conference on Advanced Computing and 

Communications, IEEE Computer Society, IEEE Publication,  pages 60-67, Guwahati, 

Assam, December, 2007. 

 



19 

 

[15] Paramjit Kaur, Rupinder Kaur, “Approaches for Generating Test Cases Automatically to 

Test the Software”, International Journal of Engineering and Advanced Technology, Vol.2, 

Issue 3, February 2013.  

[16] Philip Samuel, Rajib Mall, “A Novel Test Case Design Technique Using Dynamic Slicing 

of UML Sequence Diagrams”, e-Informatica Software Engineering Journal, Vol.2, Issue 1, 

2008. 

 

[17] Ranjita Kumari Swain, Vikas Panthi, Prafulla Kumar Behera, “Test Case Design Using 

Slicing of UML Interaction Diagram”, 2nd International Conference on Communication, 

Computing and Security, Vol.6, Pages. Pages 136 - 144, November, 2012. 

 

[18] Sangeeta Sabharwal, Ritu Sibal, Chayanika Sharma, “Applying Genetic Algorithm for 

Prioritization of Test Case Scenarios Derived from UML Diagrams”, International Journal of 

Computer Science Issues, Vol. 8, Issue 3, No. 2, May 2011. 

 

[19] Sangeeta Sabharwal, Sandeep Kumar Singh, Dhruv Sabharwal, Aditya Gabrani, “An 

Event Based Approach to generate test scenarios”, International Conference on Computer and 

Communication Technology, IEEE Publication, Pages 551-556, Allahabad, Uttar Pradesh, 

September, 2010. 

 

[20] Santosh Kumar Swain, Durga Prasad Mohapatra, Rajib Mall, “Test Case Generation 

Based on Use case and Sequence Diagram”, International Journal of Software Engineering, 

Vol. 3, Issue 2, July 2010, Pages 21 - 52, July 2010. 

 

[21] Saswat Anand, Edmund K. Bruke, Tsong Yueh Chen, John Clark, Myra B. Cohen, 

Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mccinn, “An orchestrated 

survey of methodologies for automated software test case Generation”, Elsevier Journal, The 

Journal of Systems and Software, Vol. 86, Issue 8, Pages 1978-2001, February 2013. 

 

[22] S. Shanmuga Priya, P.D. Sheba Kezia Malarchelvi, “Test Path Generation using UML 

Sequence Diagram”,   International Journal of Advanced Research in Computer Science and 

Software Engineering, Vol. 3, Issue 4, pp. 1069 - 1076, April 2013. 

 



20 

 

[23] Venkatesan. R, Sivanandam. S.N, Prasanna. M, “A Model based approach for Test case 

generation in object oriented systems”, AMSE Journals, Advances D, Vol. 13, Issue 1, Page 

18, 2008. 

[24] V. Mary Sumalatha, G.S.V.P. Raju, “Object Oriented Test Case Generation Technique 

using Genetic Algorithms”, International Journal of Computer Applications, Vol. 61,       

Issue 20, January 2013. 

[25] Wan-Hui Tseng, Chin-Feng Fan, “Systematic scenario test case generation for nuclear 

safety systems”, Elsevier Journal, Information and Software Technology, Vol. 55, Issue 2, 

Pages 344-356, February 2013. 

 

[26] William E. Perry, “Effective Methods for Software Testing Includes Complete Guidelines 

and Checklists”, 3rd edition, Wiley Publication. 

 

[27] Software Testing, Wikipedia, http://en.wikipedia.org/wiki/Software_testing, 2014. 

 

[28] Test data Generation, Wikipedia, http://en.wikipedia.org/wiki/Test_data_generation,2014. 

 

[29] Genetic algorithm, Wikipedia, http://en.wikipedia.org/wiki/Genetic_algorithm, 2014. 

 

 

 

 


