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Abstract: 

 Demand for reliable and proficient digital data transmission and storage systems has greatly increased in 

our day to day life. High speed, large-scale networks for data exchange, processing and storing of digital 

information in government, military and commercial areas has increased this demand. So, for a system 

designer the major task is the control of errors for efficient reproduction of data by using various coding 

techniques. LDPC codes are the recently using codes, because it belongs to a specific class of Shannon’s 

capacity approaching codes. Due to this advantage, LDPC codes are strong competitors of other codes used 

in communication system like turbo codes.Quasi-cyclic LDPC codes are the most promising class of 

structured LDPC codes due to their ease of implementation and excellent error performance when decoded 

with message passing algorithms.For a QC-LDPC codes to be effectively encodable and have better 

memory efficiency than other randomly constructed LDPC codes, the parity check matrix is obtained from a 

block circulant matrices. The performance of these codes over the additive white Gaussian noise(AWGN) 

channel for various block lengths and code rates are analyzed using MATLAB. 
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1. Introduction 

 Low-density parity-check (LDPC) codes are forward error-correction codes, first proposed in the 

(Sarah J. Jonson, 1962) Ph.D thesis. At that time, their incredible potential remained undiscovered due 

to the computational demands of simulation in an era when vacuum tubes were only just being replaced 
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by the first transistors.. In the mean time the field of forward error correction was dominated by highly 

structured algebraic block and convolutional codes. Despite the enormous practical success of these 

codes, their performance fell well short of the theoretically achievable limits set down by Shannon 

(D.J.C.Mackay and M.Davey, 1999) in his  paper. 

 New generalizations of Gallager’s (N.Miladinovic and M.Fossorier, 2004) LDPC codes by a 

number of researchers includes the  cyclic and Quasi-cyclic codes. Today, design techniques for LDPC 

codes exist which enable the construction of codes which approach the Shannon’s capacity to within 

hundredths of a decibel. In addition to the strong theoretical interest in LDPC codes, such codes have 

already been adopted in satellite based digital video broadcasting and long-haul optical communication 

standards, are highly likely to be adopted in the IEEE wireless local area network standard, and are 

under consideration for the long-term evolution of third generation mobile telephony. 

 Low density parity check codes have attracted considerable attention (Marcos B.S. Tavares and 

Gerhard P. Fettweis, 2004) in the coding community because they can achieve near-capacity 

performance with iterative message-passing decoding and sufficiently long block sizes. For many 

practical applications, however, the design of good codes with shorter block lengths (D.J.C. Mackay and 

R.M.Neal, 1996) is desired. Moreover, most methods for designing LDPC codes are based on random 

construction techniques; the lack of structure implied by this randomness presents serious disadvantages 

in terms of storing and accessing a large parity-check matrix, encoding data, and analyzing code 

performance. If the codes are designed with some (algebraic) structure, then some of these problems can 

be overcome. 

2. Low Density Parity Check Codes 

 LDPC codes are block codes (Sarah J. Jonson, 1962)  with parity-check matrices that contain 

only a very small number of non-zero entries. It is the sparseness of H which guarantees both a decoding 

complexity which increases only linearly with the code length and a minimum distance which also 

increases linearly with the code length. LDPC codes are designed by constructing a sparse parity-check 

matrix first and then determining a generator matrix for the code afterwards.  

 The biggest difference between LDPC codes and classical block codes is how they are decoded.      

Classical block codes are generally decoded with ML like decoding algorithms and so are usually short 

and designed algebraically to make this task less complex. LDPC codes however are decoded iteratively 

using a graphical representation of their parity-check matrix and so are designed with the properties of H 
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as a focus. An LDPC code parity-check matrix is called ( cw , rw )-regular if each code bit is contained in 

a fixed number, cw ,of parity checks and each parity-check equation contains a fixed  number, rw , of 

code bits. 

 Quasi-cyclic LDPC codes are the most promising class of structured LDPC codes due to their 

ease of implementation and excellent performance over noisy channels when decoded with message 

passing algorithm. A code is quasi-cyclic if for any cyclic shift of a codeword by c places the resulting 

word is also a codeword, and so a cyclic code is a quasi-cyclic code with c=1. 

3. Construction of QC-LDPC Block Codes 

A simple method to design a ( )kj, regular QC-LDPC code is to construct the preliminary matrix Y by 

constructing the two sequences   { 110 ,...., −jaaa } and { 110 ,..., −kbbb } with elements randomly selected 

from GF(p)(p is prime and p>2).The matrix Y is represented as 
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where the (u, v)-th element of Y can be calculated by the following quadratic congruential equation for 

fixed parameter d: 

( )[ ]vuvu eebadvuy +++= 2, ( )pmod         (2) 

where  ∈d { 1,....2,1 −p } and 

}1,...1,0{, −∈ pee vu . 

Then the proposed parity check matrix H can be constructed by using the following equation, 
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where I(x) is a p × p identity matrix with rows cyclically shifted to the right by x positions. 

     For example  I(1) is represented as follows: 

I(1)=
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Hence, the resulting H, which has j ones in each column and k ones in each row, represents a (j, k)-

regular LDPC code. This LDPC code is also an [N,K]	
  regular LDPC code, where N =	
  kp is the block 

length of the QC-LDPC code, and K is the number of message bits. 

      Since the cycles of short length may degrade the performance of LDPC codes, it is necessary to 
ensure that the Tanner graph of the LDPC codes is free of cycles of length 4 and hence has girth at least 

6. It is easy to prove that the parity check H	
   constructed by the proposed method can satisfy this. The 
proof is given in (Chun_Ming Huang et al.,2008) 

Example: A [155, 64] QC-LDPC code (p= 31) 

      Let j =3and k =5.First construct sequences and then by assuming d=1and ue , ve =0the following 

parity check matrix can be formed by substituting the above parameters in equations (2) and 

(3).Therefore the matrix can be represented as 
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where I(x)	
  is a 31×31 identity matrix with rows shifted cyclically to the right by x positions. 

 

4. Encoding and Decoding 



 
 

94 

 A block code that has a parity-check matrix H composed of circulants will have a systematic 

generator matrix also composed of circulants  if it can be written as 

H=[Λ Γ ]          (5) 

whereH is an n-k×n matrix and Γ is an n-k×n-k  invertible square matrix . 

 The conventional method for constructing the generator matrix G is to find an n-k×n-k matrix Φ 

such that ΦΓ = ( )knI − ,where ( )knI − is an n-k×n-k identity matrix.  

 Then the generator matrix will have the following form 

G=[ kI ( )TΦΛ ]          (6) 

 As it might be conjectured, not all circulant matrices H will have Γ  in an invertible form. In that 

case we have to cyclically right shift the particular columns of H in the left most side to the right side 

until we obtain Γ that has full rank. 

 LDPC code decoding tries to reconstruct the transmitted codeword c, from the possibly corrupted 

received word, y. It is achieved by using the parity-check matrix, H. The condition that TcH  = 0 defines 

the set of parity-check constraints or equations that must be satisfied for the received codeword to be the 

same as the transmitted code word. LDPC code decoding is achieved through iterative processing based 

on the Tanner graph, to satisfy the parity check conditions. 

 The sum-product algorithm is a soft decision message passing decoding algorithm (Sarah 

J. Jonson, 1962) (Y.Kou et al., 2001) The input bit probabilities are called the a priori probabilities 

for the received bits because they were known in advance before running the LDPC decoder. 

The bit probabilities returned by the decoder are called the a posteriori probabilities. In the case 

of sum-product decoding these probabilities are expressed as log-likelihood ratios (LLRs). 

 The sum-product algorithm iteratively computes an approximation of the MAP value for 

each code bit. However, the a posteriori probabilities returned by the sum-product decoder are 

only exact MAP probabilities if the Tannergraph is cycle free. 

 The steps of the message passing algorithm are given below: 

  Step 1: Initialization of LLR value [5] 

  ( )2/2 σ=ir r           (7) 
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  Step 2: Check-node update [2] 

  =ijE ,
1tanh2 − (∏ ≠∈ iiBi j

'' ,
( )2/tanh ',ijM )      (8) 

  Step 3: Variable-node update [2] 

  iL = ir +∑
∈ iAj

ijE ,          (9) 

  Step 4: Decision 

Tentative decision must be done for reconstructing the transmitted codeword. 

4. Simulation Results 

        The simulation results of QC-LDPC codes with different block lengths and code rates are shown 

here. In all cases, the iterative sum product algorithm (SPA) was used for decoding, and the maximum 

number of decoding iterations is 50. The SPA decoder stops when either a valid codeword is found or 

the maximum number of decoding iterations is reached. 
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Fig 1: Performance analysis of QC-LDPC codes for different code lengths for r=2/5. 
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Fig 2: Performance analysis of QC-LDPC codes for different code lengths for r=2/3. 
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Fig 3: Performance analysis of QC-LDPC codes for different code lengths for r=5/6. 

At SNR=4dB 
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Figure 4: Analysis of Bit error rate for different block lengths and code rates 
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and the simulation results will give an insight to the design of QC- LDPC codes for the future wireless 

standards. 

REFERENCES 
 

1. Chun-Ming Huang, Jen-Fa Huang and Chao-Chin Yang (2008)“Construction of Quasi-Cyclic 

LDPC Codes from Quadratic Congruences”, IEEE Communication Letters, Vol. 12-4. 

 

2. Sarah J.Johnson, Introducing Low-Density Parity-Check Codes, School of Electrical Engineering 

and Computer science, The University of Newcastle, Ph.D thesis, Australia. 

 

3. Marcos B. S. Tavares and Gerhard P. Fettweis, LDPC Convolutional Codes Based on 

Permutation Polynomials over Integer Rings, Vodafone Chair Mobile Communications Systems, 

Dresden University of Technology, 01062 Dresden, Germany. 

 

4. Y. Kou, S. Lin, and M. Fossorier (2001)Low-density parity check codes based on finite 

geometries: a rediscovery and new results, IEEE Transactions on Information Theory, vol. 47-7, pp. 

2711-2736. 

 

5. M. P. C. Fossorier (2004) Quasi-cyclic low density parity check codes from circulant 

permutation matrices,IEEE Transactions on Information Theory, vol. 50-8, pp. 1788-1794.  

 

6. D. J. C. MacKay and R. M. Neal (1996) Near Shannon limit performance of  low-density parity-

check codes,Electronics Letters, vol. 32, pp.1645-1646. 

 

7. D.J.C.Mackay and M.Davey (2000) Evaluation of Gallager codes for short block length and high 

rate applications,  IMA Volumes in Mathematics and its Applications, Springer-Verlag, Vol. 123, 

pp. 113-130. 

 

8. N.Miladinovic and M.Fossorier (2004)systematic recursive construction of LDPCCcodes, IEEE 

Communication Letters, Vol. 8-5,pp.302-304. 

 



 
 

100 

9. Z. Li, L. Chen, L. Zeng, S. Lin and W. Fong (2006) Efficient encoding of  quasi-cyclic low-

density parity-check codes, IEEE Transactions on Communications, Vol. 54, no.1 , pp. 71-81, 2006.  

 
10. Q. Huang, Q. Diao, S. Lin, and K. Abdel-Ghaffar (2012)Cyclic and quasicyclic LDPC codes on 

constrained parity-check matrices and their trapping sets, IEEE Transaction on Information Theory, 

vol. 58, no. 5, pp. 2648–2671, 2012. 

 
11. Y. Y. Tai, L. Lan, L. Zheng, S. Lin and K. Abdel-Ghaffar (2006) Algebraic construction of 

quasi-cyclic LDPC codes for the AWGN and erasure channels,  IEEE Transactions on 

Communications, vol 54, no. 7, pp. 1765–1774, 2006. 

12. K. Lally and P. Fitzpatrick (2001) Algebraic structure of quasicyclic codes, Discrete Applied 

Mathmatics, vol. 111, pp. 157–175, 2001. 

13. V.Murugesh and Devarajan Gopal (2009) Modelling and Synthesis of Self-Similar Network 

Traffic, AMSE journals; Advances in Modeling – Series D : Computer Science and Statistics, Vol. 

14, N°. 1-2, 2009. 

14. V.Murugesh and K.Murugesan (2013) RK-Butcher Algorithm for Non-linear Singular Systems 

from fluid dynamics, AMSE journals, Modelling, Measurement and Control-Serie B, Vol. 82, N°. 2,  

2013. 


