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Abstract  

The fluid flow and heat transfer inside a saturated porous impermeable conduit at constant 

surface heat flux was modeled analytically and numerically. The present model was depicted the 

fluid flow and the temperature distribution through both of the entrance region and the fully 

developed region. The Nusselt number was found in both regions subjected to constant surface 

heat flux boundary condition. The present modeling was developed by using; the Continuity, 

Momentum and Energy equations. The equations were in two dimensions - cylindrical 

coordinate, both of Darcy model and Forchheimer model were studied, and the Nusselt number 

was found ,analytically and numerically by using finite deference scheme, according to the 

conditions of constant surface heat flux, as approximately decaying exponentially along the 

conduit length until it reaches to the value (8). Furthermore, the temperature profile was depicted.  
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1. Introduction 

The fluid flow and heat transfer inside a saturated porous conduit had a great interest in past 

decades in order to develop the heat transfer rate equations, due to their relevance in scientific, 

technological and industrial applications, such as nuclear reactors cooling, combustion 
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technology, fuel cells, vehicle's radiator, heat exchanger in building, oil and gas flow in 

reservoirs, etc.  

  The best method of increase the heat transfer rate with optimum pressure drop is by using 

the porous material in heat exchanger, either as saturated filled or partially filled in the fluid 

inside heat exchangers. The using of porous materials enhanced the heat transfer rates, because 

of; the large surface area they provide for heat transfer. Many researchers have been interested in 

studying the importance of heat transfer rate, the fluid flow and heat transfer inside a saturated 

porous conduit were studied theoretically and experimentally. 

  The pressure loss and forced convective heat transfer in an annulus filled with aluminum 

foam was studied experimentally at constant heat flux condition, and more significant inertia 

forces are expected, through high porosity medium by Noh et al. [1]. The effect of a porous 

medium on forced convection of a reciprocating curved channel; the physical model was taken as 

two vertical channels and one horizontal, furthermore the porous medium was partially filled on 

the top surface had studied by Shung Fu et al. [2]. The forced convection gaseous slip flow in 

circular porous micro-channels; The Darcy-Brinkman-Forchheimer model was used to model the 

fluid flow inside the porous medium, to give the relation between several parameters and their 

action on the velocity slip and the temperature gradient at the wall, had done by Haddad et al. [3]. 

The variable conductivity in forced convection for a tube with porous media: A perturbation 

solution; Was found the values of Nusselt number are between 4.36 and 8, by Jamal-Abad et al. 

[4]. The heat transfer from walls to porous medium is more effectively convected to water at 

lower porosity than at higher porosity, the heat transfer rates are increased by the increasing of 

the Reynolds number and decreased by the increasing of porosity. Were investigated by Abhilash 

K V, Kumar [5]. The effect of velocity was more evident if the gradient-porosity was existing in 

radial direction than it was exist in axial direction, and the heat transfer is more considerably than 

non porous case, were argued numerically and investigated by Wang et. al. [6]. 

  In this study a new model of fluid flow and heat transfer inside a saturated porous conduit 

at constant surface heat flux, by using the Darcy and Forchheimer models, is going to be laid, 

through both of entrance and fully developed regions. So a new theoretical results for the 

coefficient of heat transfer to the flow inside a saturated porous conduit were found, for the both 

regions.   

 

2. Mathematical Formulation and Solution 

When an external power source as a pump, blower or a fan generate the fluid motion, it is 

leading to the forced convection heat transfer rate. The velocity of the fluid leads to transport a 
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significant amount of the heat energy which enhances the heat transfer rate, (the higher the 

velocity the higher the heat transfer rate). The convection heat transfer rate can be expressed by 

Newton’s law of cooling as: 

 

q = h(∆T)              [W m2⁄ ]                                                                                                                        (1) 

 

However, present study was concentrated on forced convection heat transfer problems 

inside a circular conduit filled with a porous media, the conduit is completely saturated with 

porous media, in two dimensional, the fluid is incompressible. The continuity, momentum and 

energy equations were solved simultaneously for intention to Darcy and Forchheimer's effects on 

fluid flow and heat transfer inside a saturated porous conduit. A theoretical model was built up by 

using continuity, momentum and energy equations, and it was solved due to the constant surface 

heat flux boundary condition, through entrance and fully developed region. 

Consider a long saturated porous conduit as was depicted in figure (1). The conduit was 

subjected to forced convection. The following assumptions were made for building up the 

mathematical model: 

- The flow is steady, laminar, incompressible, forced fluid flow, and two - dimensions in 

cylindrical coordinate. 

- The fluid and solid matrix are everywhere in local thermodynamics equilibrium. 

- All the physical properties of the fluid are isotropic and homogeneous. 

- The temperature of the fluid is everywhere below the boiling point.  

 

 
Fig. 1. Schematic diagram represents the conduit coordinate 
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Where 𝑟and 𝑧, are the normal and axial coordinate, respectively, and their corresponding 

velocities are 𝑣  and 𝑢 , respectively. The problem is described by the following boundary 

conditions as: the velocity in r − direction was neglected; i.e.  v = 0  , and there is no heat 

transfer in 𝑟  direction at the center; i.e. ∂T ∂r⁄ = 0  at  r = 0 . Under these assumptions, the 

governing equations can be written as (Nield and Bejan, 2006): 

The continuity equation is: 

 

∂u

∂z
+

1

r

∂(vr)

∂r
= 0                                                                                                                                          (2) 

 

Neglects the velocity component in the radial direction; thus v = 0, the equation (2) is 

reduced to: 

 
∂u

∂z
= 0                                                                                                                                                             (3) 

 

The momentum equation is:  

 

u +
CF√K

ϑ
u2 = −

K

μ

dp

dz 
                                                                                                                              (4) 

 

If the second term in left hand side of equation (4) is neglected, the Darcy model is obtained. 

Likewise, when both terms in equation (4) are represented the Forchheimer model is obtained. 

The energy equation is: 

 

ρ cp  (u
∂T

∂z
+ v

∂T

∂r
) =  k ( 

∂2T

∂z2
+

∂2T

∂r2
+

1

r

∂T

∂r
 )                                                                                (5) 

 

Note that, for fully developed region  ∂u

∂z
= 0; 

To proceed further with this study, the governing equations should be solved, so the wall 

boundary conditions on temperature should be specified at entrance and fully developed regions. 

Consideration will be given to the case where the heat flux at wall is constant; i.e.   qw =

 constant. 
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The velocity profile, temperature profile and the Nusselt number are studied at entrance 

region and fully developed region, with respect to the both of Darcy and Forcheimmer models. 

 

2.1 Through Entrance Region 

A long suction of conduit is considered in which there is no heat transfer prior to the conduit 

section in which heat transfer takes place. In many such cases, the velocity profile is then 

essentially fully developed before the heat transfer occurs, and it is then only the temperature that 

is developing, i.e. there is only a "thermal entrance region". This is illustrated in figure (2).  

 

 
Fig. 2. Schematic diagram represents thermal entrance region inside the conduit 

 

Because of; there is no heat transfer in the initial portion of the conduit flow, the fluid will 

have a uniform temperature at the point at which heat transfer starts, i.e.; at z = 0 ∶  T = Te .  

  Attention will be given to thermally developing flow in a conduit. In this case, the velocity 

profile, which is not changing with 𝑧, is given. i.e.; u =  constant. The temperature profile is 

changing with distance 𝑧 along the conduit, the temperature being assumed to be governed from 

the energy equation (5). 

The velocity component in radial direction 𝑣, being zero because of; the velocity field is 

fully developed. The diffusion of heat in axial direction will be neglected compared to that in the 

radial direction, i.e. ∂2T ∂z2⁄ = 0. So the equation (5) governing the temperature is assumed to 

have the form: 

 

u
∂T

∂z
=  (

ϑ

Pr
) ( 

∂2T

∂r2
+

1

r

∂T

∂r
 )                                                                                                                    (6) 
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Where Pr is the Prandtl number which equal to (ϑ α⁄ ) , ϑ is the kinematic viscosity and α is the 

thermal diffusivity. The following dimensionless parameters are used: 

 

θ =
(T − Te)

qwD k⁄
 , U =

u

um 
, R =

r

D
, Z =

z

D
                                                                         (7) 

 

Where θ denotes for the dimensionless temperature, Te is the temperature at entrance point, U is 

dimensionless velocity, um  is the mean velocity in the conduit, D = 2ro is the diameter of the 

conduit, Z and R are the dimensionless variables which represent for the length and the radius of 

the conduit, respectively. Re = umD ϑ⁄    is the Reynolds number based on the mean velocity, 

Pr = ϑ α⁄   is the Prandtl number, and Pe = RePr  is the Peclet number. 

In terms of the dimensionless variables, the energy equation (6) governing the developing 

temperature field. Substituting the dimensionless terms in equation (7) and  um = Reϑ/D into the 

equation (6), and because of; the aim is to solve for ∂θ ∂R⁄ , the temperature at the entrance Te, is 

out of the conduit line, so it is a constant, then it's derivation equal zero i.e.; ∂Te/ ∂Z = 0 and 

∂Te/ ∂R = 0, and the velocity was eliminated because of; it is constant u = um, i.e. U = 1 , then 

by ridding of the similar terms, the energy equation (6) is reduced to: 

 

(RePr)
∂θ

∂Z
=  

∂2θ

∂R2
+

1

R

∂θ

∂R
                                                                                                                          (8) 

 

The following dimensionless conditions, at the beginning of the thermally developing 

region, can be written as: 

The initial condition is: 

 

at    Z = 0   ∶    θ = 0                                                                                                                                   (9) 

 

And the boundary conditions are obtained as: 

 

at    R = 0.5 ∶   
∂θ

∂R
= 1                                                                                                                              (10) 

at    R = 0   ∶   
∂θ

∂R
= 0                                                                                                                              (11) 

 

In uniform surface heat flux, the dimensionless temperature at wall can be defined as: 
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θw =
Tw − Te 

qwD k⁄
                                                                                                                                            (12) 

 

So the local Nusselt number can be found from the equation (12) as: 

 

NuD =
1

θw
=

1

θ|R=0.5
                                                                                                                               (13) 

 

where is NuD is the local Nusselt number, and θw is the dimensionless temperature at the wall. 

In the case of uniform surface heat flux and from the equation of dimensionless temperature 

(7), the temperature equation can be rewritten as: 

 

T = θ(
qwD

k
) + Te                                                                                                                                     (14) 

 

Note that, the mean temperature, Tm  can be found as: 

 

Tm =
∫ u T 2πrdr

ro

0

∫ u 2πrdr
ro

0

                                                                                                                                  (15) 

 

By substituting the dimensionless parameters in the equation (7) and the equation (14) into 

the equation (15), it can be represented as:   

 

Tm − Te = U8(
qwD

k
)∫  θ RdR

0.5

0

                                                                                                           (16) 

 

Substituting (U = 1) as previously assumption, constant velocity, into the equation (16), so it 

leads to: 

 

Tm − Te

(qwD k⁄ )
= 8∫  θ RdR

0.5

0

                                                                                                                          (17) 
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By using the equation (12) with the following mean variables such as: θm and  Tm instead of 

θw and  Tw  respectively, the equation (12) can be represented for the mean temperature as 

dimensionless form at any value of 𝑍,  as: 

 

θm =
Tm − Te 

qwD k⁄
                                                                                                                                           (18) 

 

Substitute the equation (18) into the equation (17) to become as:  

 

θm = 8∫  θ RdR

0.5

0

                                                                                                                                      (19) 

 

The Nusselt number which based on the difference between the wall and the mean 

temperatures (Tw − Tm) can be found from the equation (18) as: 

Num =
1

(θw − θm)
                                                                                                                                    (20) 

The value of the Nusselt number was found exponential decay until reach to 8.  

 

2.2 Through Fully Developed Region 

Because of; the mass flow rate remains constant along the pipe as dose, by assumption, the 

velocity gradient at fully developed region was eliminated; i.e. ∂u ∂z⁄ = 0; then the continuity 

equation (2) is reduced to: 

 
∂(vr)

∂r
= 0                                                                                                                                                     (21) 

 

So the terms vr is a constant denoted by 𝑐, and because of the radial velocity at wall equal 

zero i.e. v = 0, then the constant 𝑐 leads to zero i.e. 𝑐 = 0. 

The momentum equation at  r = ro  can be represented as:  

 

 u +
CF√K

ϑ
 u2 = −

K

μ

∂p

∂z
                                                         z − momentum                                   (22) 
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v +
CF√K

ϑ
 v2 = −

K

μ

∂p

∂r
                                                            r − momentum                                  (23) 

 

But from the continuity equation it was known that, v = 0, so r − momentum equation (23) 

is reduced to: 

 
∂p

∂r
= 0                                                                                                                                                         (24) 

 

It leads to; P =  constant, and r − momentum was negligible; 

Then it was needed to solve for  u  from z − momentum equation (24), if the second term 

was neglected the Darcy velocity equation can be obtained as: 

 

uD = −
K

μ

∂p

∂z
                                                                                                                                              (25) 

 

If the both terms in the left hand side of the equation (24) were considered, the Forchheimer 

velocity equation was appeared, and due to find the velocity component in z − direction;   u ,the 

equation (24) can be written in the general form as  ax2 + bx + c = 0, so it was solved for 𝑥; as  

x = (−b ± √b2 − 4ac) 2a⁄ . Hence the Forchheimer velocity can be presented as: 

 

uF =
ϑ

CF
[−

1

2√K
 ± √

1

4K
−

CF√K

ρϑ2

dp

dz 
 ]                                                                                                 (26) 

 

It was noted that, the positive velocity (u) is constant, because it is independent variable, 

and it was the area average velocity for both fluid and solid in saturated porous media conduit.  

The negative solution of (u) was negligible, because it is meaningless. 

For simplicity, the dimensionless term  ((CF√K) (ρϑ2)⁄ )(dp dz ⁄ )  can be denoted by  , as: 

 

H =
CF√K

ρϑ2

dp

dz 
                                                                                                                                             (27) 

 

So, the Forchheimer velocity equation is reduced to: 
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 uF =
ϑ

CF
[−

1

2√K
 ± √

1

4K
− H ]                                                                                                             (28) 

 

The energy equation (5) can be written in the form: 

 

 u
∂T

∂z
=  α ( 

∂2T

∂r2
+

1

r

∂T

∂r
 )                                                                                                                      (29) 

 

The term ∂T ∂z⁄  can be replaced by another one, which came from a temperature profile 

such as:    

 
Tw − T

Tw − Tc
=  G (

r

ro
)                                                                                                                                    (30) 

   

where G is any function does not depend of the distance along the pipe (z) for fully developed 

region as depicted in figure (3): 

 

 
Fig. 3. Schematic diagram represents the temperature profile through the fully developed region 

inside the conduit 

 

Differentiate equation (30) with respect to z, and the result was gotten as: 

 

∂T 

∂z
=

∂Tw 

∂z
− 

(Tw − T)

(Tw − Tc)
∗ ( 

∂Tw 

∂z
−

∂Tc 

∂z
 )                                                                                         (31) 
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To proceed further with the solution of the case of constant surface heat flux, and variable 

wall temperature  Tw  i.e. [qw = constant  at  r = ro] , so the wall boundary conditions on 

temperature should be specified as following.  

By using Fourier's law, the heat transfer rate at the wall is given as 

   

qw = +k
∂T

∂r
|
r=ro

                                                                                                                                     (32)   

 

The positive sign arises because 𝑟 is measured from the center toward the wall, whereas the 

heat flux qw , is taken as positive in the inward direction, i.e. in the wall to fluid direction. 

This equation can be written by using the definition of the function 𝐺 as on equation (30), and it 

is differentiated with respect to 𝑟 at  r = ro , to leads to:  

 
∂T

∂r
|
r=ro

= −(Tw − Tc) 
∂ G

∂r
|
r=ro

                                                                                                           (33) 

 

Substituting the equation (33) into the equation of heat transfer rate (32), which leads to: 

 

qw = − k (Tw − Tc) 
∂ G

∂r
|
r=ro

                                                                                                               (34) 

 

By assumption where is the heat transfer rate is uniform i.e. (Tw − Tc) is constant, so it can 

be shown that:  

 
dTw 

dz
=

dTc

dz
                                                                                                                                                 (35) 

 

Substituting equation (35) into the equation (31), it leads to: 
∂T

∂z
=

dTw 

dz
                                                                                                                                                  (36) 

 

Substituting equation (36) into the energy equation (29), it can be reduced to: 

 

u
dTw 

dz
=  α (

∂2T

∂r2
+

1

r

∂T

∂r
 )                                                                                                                     (37) 

750



Which has to be solved to give the temperature distribution by using the Forchheimer or the 

Darcy velocities which were given in the equations (28) and (25), respectively. 

 

A. By Using Forchheimer Model 

It can be seen that, the energy equation (29) can be written for Forchheimer flow by 

substituting the Forchheimer equation (28) into the energy equation (37) to obtain the following:  

 

ϑ

CF
[−

1

2√K
 ± √

1

4K
− H ] [

dTw 

dz
] =  α [

1

r

∂

∂r
(r

∂T

∂r
)]                                                                         (38) 

 

The equation (38) can be integrated, subject to the boundary conditions to give the variation 

of  𝑇 with 𝑟. 

The following boundary conditions can be used for the solution: 

 

at    r = 0 ∶                    
∂T

∂r
= 0                                                                                                                 (39) 

 

Note that; this boundary condition was becoming from the requirement that, the profile be 

symmetrical about the center line (at r = 0), and: 

 

qw = constant                                                                                                                                         (40)  

 

The equation (38) can be solved analytically, by using the boundary condition in equation 

(39) to give the variation of  𝑇 with 𝑟. 

Equation (38) was integrated with respect to the radial coordinate (𝑟), from (0) to (r) ,by 

using the boundary condition in the equation (39), so the equation (38) leads to: 

 

∂T

∂r
=

ϑ

α CF

dTw 

dz
[−

1

2√K
 ± √

1

4K
− H ] ∗

r

2
                                                                                          (41) 

 

Equation (41) was integrated again with respect to the radial coordinate (𝑟), from (r) to (ro), 

to become as: 
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T = Tw −
ϑ

α CF

dTw 

dz
[−

1

2√K
 ± √

1

4K
− H ] ∗

ro
2 − r2

4
                                                                     (42) 

 

This is the temperature distribution for fully developed laminar pipe flow when the heat flux 

at the surface is uniform (constant). It can be written in terms of the specified uniform surface 

heat flux qw, by noting that when the equation (42) is used to give the value of (∂T ∂r⁄ )|r=ro
 in 

equation (32), so differentiate the equation (42) with respect to 𝑟 and replace  r  by ro, to get the 

following: 

 

∂T

∂r
|
𝑟=𝑟𝑜

= +
ϑ

2 α𝐶𝐹

𝑑𝑇𝑤 

𝑑𝑧
[−

1

2√𝐾
 ± √

1

4𝐾
− 𝐻 ] ∗ 𝑟𝑜                                                                         (43) 

 

Substituting the equation (43) into the conduction heat transfer equation (32) to leads to: 

 

2qw

kro
=

ϑ

α CF
[−

1

2√K
 ± √

1

4K
− H ]

dTw 

dz
                                                                                              (44) 

 

Substituting equation (44) into the equation of the temperature distribution (42) to get the 

following: 

 

T − Tw = +
2qw

kro
∗

r2 − ro
2

4
                                                                                                                    (45) 

 

The center line temperature Tc (i.e. at r = 0), can be obtained from the equation (45), by 

replacing 𝑇, 𝑟 by Tc ,  zero , respectively, to get the following: 

 

Tw −  Tc 
=

qwro

2k
                                                                                                                                      (46) 

 

Therefore, the temperature distribution can be written in the form as for fully developed 

flow equation (30). 

Substituting equations (45-46) into the equation (30), to get the form of the temperature 

distribution for fully developed flow through a conduit with constant surface heat flux such as: 
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G =

−2qw

kro
∗

r2 − r0
2

4
qwro

2k

 

G =
r0

2 − r2

ro
2

                                                                                                                                               (47) 

 

In fully developed flow, it is usually convenient to utilize the mean fluid temperature, Tm, 

rather than the center line temperature in defining the Nusselt number. So the mean or bulk 

temperature is given by: 

 

Tm =
1

 ṁ
 ∫ ρu TdA

A

                                                                                                                                   (48) 

 

Where 𝐴 is the cross section area of the conduit; = πr2 and  ṁ  is the mass flow rate inside the 

conduit, so the mass flow rate can be written as: 

 

ṁ =  ∫ ρu dA

A

 

ṁ =  ρu ∫  2πr dr

ro

0

 

ṁ =  ρu πro
2                                                                                                                                              (49) 

 

Substitute equation (49) into the equation (48) to get the following: 

 

Tm =
2

 ro
2 

 ∫  Tr dr

A

                                                                                                                                  (50) 

 

Substitute the equation (42)  into the equation (50) to get the following: 

 

Tm = 
Twr2

ro
2 

+
qw

kro
3

 r4

4
  −

qw

kro

 r2

2
                                                                                                          (51) 

 

It is noted that, the Nusselt Number is equal: 
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Nu =
hD

k
                                                                                                                                                      (52) 

 

Substituting that: D = 2ro   and  h = qw (Tw−Tm)⁄  into the equation (52) to become as: 

 

Nu =
2roqw

k(Tw−Tm)
                                                                                                                                        (53) 

 

Note that; Tm at r = ro can be obtained by substitute ro instead of 𝑟 into the equation (51) to 

become as:  

 

Tm|r=ro
= {Tw −

qw

k

ro 

4
   }                                                                                                                      (54) 

 

By substituting the equation (54) into the equation (53), the Nusselt number can be found as:  

Nu = 8 

 

B. By Using Darcy Model 

It also can be seen that, the energy equation (29) can be also written for Darcy flow by 

substituting the Darcy velocity equation (25), into the energy equation (37) to obtain the 

following: 

 

[−
K

μ

∂p

∂z
] [

dTw 

dz
] =  α (

∂2T

∂r2
+

1

r

∂T

∂r
 )                                                                                                   (55) 

 

The equation (55) can be integrated, subject to the same boundary conditions in the 

equations (39-40) to give the variation of  𝑇 with 𝑟. So the equation (55) leads to:  

 
∂T

∂r
= [−

K

αμ

∂p

∂z
] [

dTw 

dz
] ∗

r

2
                                                                                                                      (56) 

 

The equation (56) can be integrated again to become as: 

 

T = Tw + [
K

αμ

∂p

∂z
] [

dTw 

dz
] ∗

r0
2 − r2

4
                                                                                                     (57) 
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This is the temperature distribution for fully developed laminar pipe flow when the surface 

heat flux is uniform (constant). It can be written in terms of the specified uniform surface heat 

flux qw, by noting that, the equation (57) can be used to give the value of (∂T ∂r⁄ )|r=ro
 in the 

equation (32), so differentiate the equation (57) with respect to r , and replacing  r  by ro, to get 

the following: 

 
∂T

∂r
|
r=ro

= [−
K

2αμ

∂p

∂z
] [

dTw 

dz
] ∗ r0                                                                                                          (58) 

 

Substituting the equation (58) into the equation (32) to leads to: 

 
2qw

kr0
= [−

K

αμ

∂p

∂z
] [

dTw 

dz
]                                                                                                                          (59) 

 

Substituting equation (59) into the equation (57) to get the same form of equation (46). 

The same procedure was repeated from equation (49) to (55), and the Nusselt number can be 

found by substituting the equation (55) into the equation (54), so the result can be evaluated as:  

Nu = 8 

 

3. Numerical Solutions  

 The equation (8) was solved numerically by using finite difference method according to the 

conditions in the equations (9-11). 

A series of grid lines in the axial and normal directions i.e. in Z and R coordinate, respectively, 

are built. A uniform steps were used in both directions such that ∆Z and ∆R, respectively. 

The 2-D conduit space was divided as shown in figure (4). 

 

 
Fig. 4.a 
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Fig. 4.b 

Fig. 4. Schematic diagram represents the space direction and dividing inside the conduit 

 

The equation (8) was written in the discrete form, such as ∂θ

∂Z
  was approximated as: 

 
∂θ

∂Z
|
(Z,R)

=
θ(    Z,R)−θ(Z−∆Z,R) 

∆Z
                                                                                                                    (60 )    

or 
∂θ

∂Z
|
(i,j)

=
θ(i,j)−θ(i,j−1) 

∆Z
                                                                                                                                (61)  

 
∂θ

∂R
   was approximated as: 

 
∂θ

∂R
|
(Z,R)

=
θ(Z,R)−θ(Z,R−∆R) 

∆R
                                                                                                                      (62 )    

 or 
∂θ

∂R
|
(i,j)

=
θ(i,j)−θ(i−1,j) 

∆R
                                                                                                                               (63 )    

And  ∂
2θ

∂R2  was approximated as: 

 
∂2θ

∂R2
|
(Z,R)

=
θ(Z,R+∆R)−2θ(Z,R)+θ(Z,R−∆R) 

(∆R)2
                                                                                                (64 )    

or 
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∂2θ

∂R2|
(i,j)

=
θ(i+1,j)−2θ(i,j)+θ(i−1,j) 

(∆R)2
                                                                                                             (65 )    

 

Where: 

 

R = (i − 1). ∆R                                                                                                                                         (66 )    

 

Thus the partial differential equation (8) in discrete form becomes: 

 
θ(i,j)−θ(i,j−1)

∆Z
=

θ(i+1,j)−2θ(i,j)+θ(i−1,j)

(∆R)2
+

θ(i,j)−θ(i−1,j)

(i−1).(∆R)2
                                                                           (67 )    

 

And from equation (67): 

 

θ(i, j) − θ(i, j − 1) =
∆Z

(∆R)2
[θ(i + 1, j) − 2θ(i, j) + θ(i − 1, j)] +

∆Z

(i−1).(∆R)2
[θ(i. j) − θ(i −

1, j)]                                                                                                                                                              (68 )    

 

or: 

 

θ(i, j) − θ(i, j − 1)

=
∆Z

(∆R)2
θ(i + 1, j) − 2

∆Z

(∆R)2
θ(i, j) +

∆Z

(∆R)2
θ(i − 1, j)

+
∆Z

(i − 1). (∆R)2
θ(i. j)

−
∆Z

(i − 1). (∆R)2
θ(i

− 1, j)                                                                                                                                                             (69 )    

 

So, it becomes as: 

 

θ(i, j) + 2
∆Z

(∆R)2
θ(i, j) −

∆Z

(i − 1). (∆R)2
θ(i. j)

= θ(i, j − 1) +
∆Z

(∆R)2
θ(i + 1, j) +

∆Z

(∆R)2
θ(i − 1, j)−

∆Z

(i − 1). (∆R)2
θ(i − 1, j) 
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[1 + 2
∆Z

(∆R)2
−

∆Z

(i−1).(∆R)2
] θ(i, j) = θ(i, j − 1) +

∆Z

(∆R)2
θ(i + 1, j) + [

∆Z

(∆R)2
−

∆Z

(i−1).(∆R)2
] θ(i −

1, j)                                                                                                                                                               (70 )    

 

Or, in abbreviated form, the iterative equation becomes: 

 

α(i)θ(i, j) = θ(i, j − 1) + β. θ(i + 1, j) + γ(i)θ(i − 1, j)                                                                 (71 )    

Where: 

α(i) = 1 +
2∆Z

(∆R)2
−

∆Z

(i−1).(∆R)2
                                                                                                                 (72 )    

β =
∆Z

(∆R)2
                                                                                                                                                     (73 )    

And  

γ(i) =
∆Z

(∆R)2
−

∆Z

(i−1).(∆R)2
                                                                                                                          (73 )    

 

So, by using the boundary and initial conditions in equations (9-11), it can be concluded that 

all the elements of the first column of matrix θ are zeros.  

And it was noted that about the second column; Where θ(end + 1,2), which will appear in the 

last equation, is assumed equal to θ(end, 2) as practically they are equal as the step in R is very 

small. So it can be written as Matrix form as: 

 

[
 
 
 
 
 
 
 
 
 
 
 
α(2) − γ(2) −β 0 0 0 0 … 0 0 0

−γ(3) α(3) −β 0 0 0 … 0 0 0

0 −γ(4) α(4) −β 0 0 … 0 0 0

0 0 −γ(5) α(5) −β 0 … 0 0 0

0 0 0 −γ(6) α(6) −β … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0
0 0 0 0 0 0 −γ(end − 2) α(end − 2) −β 0

0 0 0 0 0 0 0 −γ(end − 1) α(end − 1) −β

0 0 0 0 0 0 0 −γ(end) α(end) −β]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 

θ(2,2)

θ(3,2)

θ(4,2)

θ(5,2)

θ(6,2)
⋮
⋮
⋮

θ(end − 2,2)

θ(end − 1,2)

θ(end, 2) ]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
−γ(2)∆R

0
0
0
0
⋮
⋮
⋮
0
0
0 ]

 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                                                         (74 ) 
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For the third column, it can be written in the matrix form as: 

 

[
 
 
 
 
 
 
 
 
 
 
α(2) − γ(2) −β 0 0 0 0 … 0 0 0

−γ(3) α(3) −β 0 0 0 … 0 0 0

0 −γ(4) α(4) −β 0 0 … 0 0 0

0 0 −γ(5) α(5) −β 0 … 0 0 0

0 0 0 −γ(6) α(6) −β … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0
0 0 0 0 0 0 −γ(end − 2) α(end − 2) −β 0

0 0 0 0 0 0 0 −γ(end − 1) α(end − 1) −β]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

θ(2,3)

θ(3,3)

θ(4,3)

θ(5,3)

θ(6,3)
⋮
⋮
⋮

θ(end − 1,3)

θ(end, 3) ]
 
 
 
 
 
 
 
 
 
 

 =

[
 
 
 
 
 
 
 
 
 
 
θ(2,2) − γ(2)∆R

θ(3,2)
θ(4,2)
θ(5,2)

θ(6,2)
⋮
⋮
⋮

θ(end − 2,2)
θ(end − 1,2) ]

 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                                      (75 )    

 

For the last column, it can be written as the matrix form: 

 

 

[
 
 
 
 
 
 
 
 
 
 
α(2) − γ(2) −β 0 0 0 0 … 0 0 0

−γ(3) α(3) −β 0 0 0 … 0 0 0

0 −γ(4) α(4) −β 0 0 … 0 0 0

0 0 −γ(5) α(5) −β 0 … 0 0 0

0 0 0 −γ(6) α(6) −β … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0 0 0
0 0 0 0 0 0 −γ(end − 2) α(end − 2) −β 0

0 0 0 0 0 0 0 −γ(end − 1) α(end − 1) −β]
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 

θ(2, end)

θ(3, end)

θ(4, end)

θ(5, end)

θ(6, end)
⋮
⋮
⋮

θ(end − 1, end)

θ(end, end) ]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
θ(2, end − 1) − γ(2)∆R

θ(3, end − 1)
θ(4, end − 1)
θ(5, end − 1)

θ(6, end − 1)
⋮
⋮
⋮

θ(end − 2, end − 1)
θ(end − 1, end − 1) ]

 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                              (76 )    

 

Each of these matrices equations (74-76) were solved to find the unknown elements of the θ 

matrix. A program was built by using Matlab software, to describe the temperature variation at all 

points inside the conduit, such as it was illustrated in the matrix (77) below. 
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[
 
 
 
 
 
 
 

θ(1,1) θ(1,2) θ(1,3) … θ(1, end − 1) θ(1, end)

θ(2,1) θ(2,2) θ(2,3) … θ(2, end − 1) θ(2, end)

θ(3,1) θ(3,2) θ(3,3) … θ(3, end − 1) θ(3, end)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

θ(end − 1,1) θ(end − 1,2) θ(end − 1,3) … θ(end − 1, end − 1) θ(end − 1, end)

θ(end, 1) θ(end, 2) θ(end, 3) … θ(end, end − 1) θ(end, end) ]
 
 
 
 
 
 
 

            (77 )    

 

So, the study was concluded by measuring the temperature at each point in the diameter with 

uniformed steps in R direction along the whole length of the tube. Where the partial differential is 

parabolic in behavior and is explicit finite difference numerical technique is used.   

The thermal circuit of the conduit is best described by conservation principles explained in 

the governing equations where all mass, momentum and energy must be satisfied at each and 

every point of the grid. 

 

4. Results and Discussions    

It was noted that, the same answer was obtained, because of the difference between both 

models was appeared in the energy equation and by the definition of the heat transfer rate 

equation's as it is latent in the equations (45) and (59) for Forchheimer and Darcy models, 

respectively. 

The dimensionless temperature profile is depicted in figure (5) with the dimensionless 

length of the conduit (Z − coordinate) at selective values of the dimensionless radius of the 

conduit (𝑅), and figure (6) is present the dimensionless temperature with (𝑅) at selective values 

of (𝑍).  

It is clear that, from figures (5,6), the temperature increases in the direction of downstream; 

this is due to continuous heating of the fluid in the entrance region, and it is revealed that; the 

minimum temperature is found at the center of the conduit. 

From figure (5), it also found that, the length of the entrance region in the case of constant 

surface heat flux is very teeny, and it could not be possible to compute or present it in the figure, 

so its value is of infinitesimal value. 
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Fig. 5. Dimensionless temperature profile in entrance region for constant surface heat flux along 

the conduit 

 
Fig. 6. Dimensionless temperature profile in entrance region for constant surface heat flux with 

radius of the conduit. 

 

Figure (7.a) depicted the local Nusselt number along the conduit length, for selective values 

of Reynolds numbers, and figure (7.b) is for selective values of Prandtl numbers. Where the local 

Nusselt numbers is computed with respect to the difference between the wall and the entrance 

temperatures.  
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It is clear that, the local Nusselt number is approximately exponentially decay until it 

reached zero, this is due to decreasing the difference between the wall temperature and the 

entrance temperature along the conduit. Also it is clear that, when Reynolds number or Prandtl 

numbers are increased the local Nusselt number is shifted up.  

 

 
Fig. 7.a 

 
Fig. 7.b 

Fig. 7. Local Nusselt number variation in entrance region for constant surface heat flux along the 

conduit with selective values of: 

a) Reynolds numbers       b) Prandtl numbers 
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Fig. 8.a 

 
Fig. 8.b 

Fig. 8. Nusselt number variation in entrance region for constant surface heat flux along the 

conduit with selective values of: 

a) Reynolds numbers       b) Prandtl numbers 

 

Figure (8.a) depicted the Nusselt number along the conduit with unity values of Prandtl 

numbers, and selective values of Reynolds numbers, while figure (8.b) depicted the Nusselt 

number along the length of conduit with unity value of Reynolds numbers, and selective values 

of Prandtl numbers. 

763



The Nusselt numbers is computed with respect to the difference between the mean 

temperature and the wall temperatures, so figure (8) is presented the Nusselt number as 

approximately decay exponentially along the conduit length. 

 

 
Fig. 9.a 

 
Fig. 9.b 

Fig. 9. Nusselt number variation in entrance region for constant surface heat flux along the 

conduit with : 

a) Re=500 and Pr=0.7,1,7      

 b) Pr=0.7 and Re=100,300,500 
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Figure (9.a) depicted the Nusselt number along the conduit, with selective values of Prandtl 

numbers, and constant Reynolds number, while figure (9.b) depicted the Nusselt number along 

the length of conduit with selective values of Reynolds numbers, and constant value of Prandtl 

number. 

It is clear that from figures (8,9), when the Reynolds number and Prandtl number are 

increased the Nusselt number is shifted up; this is due to favorable higher inertia forces inside the 

fluid layers, it is also reveal that, the Nusselt number is increased significantly with higher value 

of Reynolds number. 

The dimensionless temperature at the center of conduit, i.e. at (R = 0) along the conduit is 

illustrated in figure (10). Figure (10.a) presents the dimensionless temperature at constant value 

of Reynolds number and selective values of Prandtl numbers, while the figures (10.b) at the 

constant value of Prandtl number and selective values of the Raynolds numbers. 

It is clear that from figure (10); when Reynolds number or Prandtl number are increased the 

fluid is heated slowly; this is due to high velocity inside boundary layers, and there are not 

enough time to show the fluid heating effects along the conduit. 

 

 
Fig. 10.a 
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Fig. 10.b 

Fig. 10. Dimensionless temperature at center of conduit in entrance region for constant surface 

heat flux along the conduit with: 

a) Re=500 and Pr=0.7,1,7       

b) Pr=0.7 and Re=100,300,500 

 

The dimensionless temperature at the end of conduit (i.e. at  Z = 1) along the radius of the 

conduit is illustrated in figure (11). Figure (11.a) presents the temperature for constant value of 

Reynolds number and selective values of Prandtl numbers, while figure (11.b) presents the 

temperature for constant value of Prandtl number and selective values of Reynolds numbers. 

It is reveal that; from figure (11), as the Reynolds number or Prandtl number are increased 

the temperature near the surface is increased, and the minimum temperature is sticked around the 

center of the conduit. It is also clear that, when the Reynolds or Prandtl numbers are increased the 

temperature near the surface is going heated slowly; this is due to increasing the velocity of the 

fluid inside the conduit.  
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Fig. 11.a 

 
Fig. 11.b 

Fig.11. Dimensionless temperature at end of conduit in entrance region for constant surface heat 

flux along the radius of the conduit with: 

a) Re=500 and Pr=0.7,1,7       

b) Pr=0.7 and Re=100,300,500 

 

In fully developed region; it is clear that from the equations (45) and (59), the heat flux was 

defined twice; first equation illustrated the heat flux with respect to the Forchheimer model, and 

the second one with respect to the Darcy model, respectively.  So it is revealed that, from the 
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equation (54) and (55); the velocity is known and implied into the Nusselt number's equation in 

(54), so the effect of the difference between the both models did not appear in the final results, 

and the Nusselt number was found analytically for both models, Darcy or Forchheimer 

identically; as equal to (8). But it is known that; the heat transfer rate, velocity and pressure drop 

by using Forchheimer model is greater than its in Darcy model. 

 

Conclusion 

Through this work, a model of fluid flow and heat transfer inside a saturated porous conduit 

at constant surface heat flux was investigated. With careful inspection of previous paper, one can 

conclude that: 

1. Using the porous media to increase the rate of  heat transfer is very promising. 

2. The fluid flow velocity was decreased in the direction of downstream due to using the 

porous media inside the conduit.  

3. The pressure drop was increased due to using the porous media inside the conduit.  

4. The Nusselt number was not depend on the flow velocity, if it was constant or in the case 

of forced flow.  

5. The Nusselt number was increased with increasing Reynolds or Prandtl numbers. 

6. The heat transfer rate was increased with increasing Reynolds number or the flow 

velocity.  
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NOMENCLATURE 

 

Symbol Quantity Unit 

A Cross section area m2 

𝐶𝐹 Forchheimer coefficient − 

C𝑝 Specific heat of the fluid at constant presure J (Kg. K)⁄  

D Diameter as [2ro] m 

G A function does not depend of the distance  

along the conduit for fully developed region as 

  [G(r/ro) = (Tw − T)/(Tw − Tc )] 

 

 

− 

H Dimentionless term in Forchheimer model as ; 

[
cf√K

ρϑ2

dp

dz 
] 

 

 

− 

h Heat transfer coefficient  W (m2. K)⁄  

i Nodes number in axial direction − 

j Nodes number in normal direction − 

K Permeability m2 

k Thermal conductivity W/(m. K) 

L Length m 

ṁ Mass flow rate kg/s 

Nu Nusselt number − 

NuD Local Nusselt number − 

p Pressure N/m2 

Pe Peclet number as [RePr] − 

Pr Prandtl  number as [ϑ/α] − 

q Heat flux per unit area W/m2 

R Dimensionless radius of the conduit − 
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Re Reynolds number − 

ReK Reynolds number based on Permeability as 

 [um√K 𝜗⁄ ] 

 

− 

Reum
 Reynolds number based on mean velocity as 

 [umD ϑ⁄ ] 

 

− 

r Raduis of the conduit m 

ro Outer raduis of the conduit m 

T Temperature K 

Te  The temperature at the entrance of the conduit K 

Tw  The temperature at the wall of the conduit K 

u Velocity component in z − direction m s⁄  

um  The mean velocity in the conduit m s⁄  

v Velocity component in r − direction m s⁄  

x Axial coordinate − 

y Normal coordinate − 

Z The dimension length of the conduit − 

 

Greek Letters 

 

Symbol Quantity Unit 

α Thermal diffusivity as [k/ρCp] m2/s 

α(i) A constant in iterative equation number (71) − 

β(i) A constant in iterative equation number (71) − 

γ(i) A constant in iterative equation number (71) − 

θ Dimensionless temperature − 

μ Absolute or dynamic viscosity kg (m. s)⁄  

ϑ Kinematic viscosity as [μ ρ⁄ ] m2/s 

ρ Fluid density kg m3⁄  
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