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Abstract  

A numerical analysis is conducted for the primary and secondary flow characterizing 

dissipative micropolar convective heat and mass transfer from a rotating vertical plate with 

oscillatory plate velocity adjacent to a permeable medium. A dominant cross diffusion so called 

Soret and Dufour effects has been included. The entire system rotates with uniform angular velocity 

about an axis normal to the plate. Rosseland’s diffusion approximation is used to describe the 

radiative heat flux in the energy equation. The partial differential equations governing the flow 

problem are rendered dimensionless with appropriate transformation variables. They exhibit both 

primary and secondary motions when the boundaries are subject to slow rotations. A Galerkin finite 

element method is employed to solve the emerging multi-physical fluid dynamics problem. The 

evolution of primary and secondary velocity, primary and secondary angular velocity, temperature 

and concentration are examined for a variety of parameters which governs the flow. Comparison 

of the present numerical solutions with the earlier published analytical results shows an excellent 

agreement, this validating the accuracy of the present numerical method. The current simulations 

may be applicable to various oscillating rheometry, magnetic rheo-dynamic materials processing 

systems and rotating MHD energy generator near-wall flows. 
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1. Introduction 

 

In many physico-heat and mass transfer studies, related to both Newtonian and non-Newtonian 

fluids, thermo-diffusion (Soret) and diffuso-thermo (Dufour) effects play a prominent role. These 

effects are often of smaller order of magnitude in comparison with the diffusive effects associated 

with thermal conduction (Fourier’s law) and mass diffusion (Fick’s laws) and are frequently 

neglected. However, these so-called cross diffusion effects become important if not dominant, in 

materials processing operations e.g. dendritic growth [1-2], magnetic separation of colloids [3], 

MHD power generators [4] and aerospace combustion and flame dynamics [5-6] where they arise 

in binary gas and supercritical fuel injection systems. Generally, when heat and mass transfer 

effects occur simultaneously in a moving fluid, the relationship between the fluxes and the driven 

potentials become significant. An energy flux can be generated not only by temperature gradient 

but also by composition gradient as well. The energy caused by a composition gradient is called 

the Dufour effect or diffusion-thermo effect. The energy caused by a temperature gradient is called 

the Soret effect or thermo-diffusion effect. The thermal Soret effect can for example also generate 

a very strong coupling force between the species (solute) and heat transport. Due to the significance 

importance of Soret and Dufour diffusion phenomena for fluids with medium molecular weight as 

well as very light molecular weights, in recent years, substantial interest has emerged in simulation 

of these effects in many multi-physical transport problems. Postelnicu [7] considered magnetic free 

convection in porous media with Soret and Dufour effects. Alam and Rahman [8] investigated 

combined Dufour and Soret effects on hydromagnetic natural convection flow in a porous medium. 

Further studies of Newtonian flows with Soret/Dufour effects include Vasu et al. [9] (for wall mass 

flux effects), Bég et al. [10] and Thripathy et al. [11] (for hydromagnetic flow from an extending 

sheet in porous media) and Partha et al. [12] (for non-Darcian thermal convection). Non-Newtonian 

heat and mass transfer with Soret and/or Dufour effects has also attracted some attention. Bég et 

al. [13] used a finite element method to simulate two-dimensional micropolar boundary layer flows 

in Darcy-Forchheimer permeable materials with Soret and Dufour cross diffusion effects. Other 

representative studies include Mishra et al. [14], Olajuwon and Oahimire [15], Kundu et al. [16], 

Bakr and Chamkha [17] (again both for micropolar fluids). Cross diffusion effects with higher 

order chemical reaction effects on micropolar fluid was examined by Arifuzzaman et al. [18]. 

Rotating thermal convection flows arise in an extensive range of industrial systems including 

rotating heat exchangers, multi-stage cyclone separators, mixing devices in chemical engineering 

and spin-stabilization of spacecraft vehicles. Rotating fluid systems generate both real and fictitious 

forces, the former is the centrifugal force and the latter is the Coriolis force. Should the rate of 
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rotation of a body change then a third fictitious force, the Euler force may also be invoked. The 

interplay between Coriolis force and viscous force have profound effects on for example external 

boundary layer growth, thermal boundary layer thickness etc. The Coriolis force induces motion in 

the secondary flow direction. Further complexities arise when the fluid is electrically conducting 

and when mass transfer (species diffusion) is present. Investigations of boundary layer flows with 

variety of configurations e.g. rotating plate [19], co-rotating cylinder [20], rotating disk [21], 

rotating system [22, 23]. These studies have shown significant modification in momentum, heat 

and also mass transfer rates induced by rotational body force. They have however generally been 

confined to Newtonian fluids. Many non-Newtonian fluids arise in technological applications 

including polymers, slurries, gels, dusty suspensions etc. They are characterized by complex micro-

structure and observations have revealed that such fluids generally deviate from the classical 

Navier-Stokes viscous flow model. This model cannot simulate the effects of molecular spin since 

it neglects couple stresses in the constitutive formulation. To address this issue Eringen proposed 

the micro-morphic theory of fluids over five decades ago, of which several special cases have 

sustained significant interest in engineering sciences. These are the micro-stretch fluid and the 

micropolar fluid [24]. The latter has received wide attention in heat and mass transfer modelling. 

The Eringen micropolar theory features additional degrees of freedom (gyratory motions) which 

allow the physical representation of the rotation of the microstructure. Hence, the balance law of 

angular momentum is introduced for solving gyration, extending the conventional linear 

momentum balance in Newtonian models. Molecular spin can therefore be analysed robustly within 

the framework of micropolar fluid mechanics. An additional advantage is that micropolar models 

do not require computationally intensive simulations which are necessary for alternative 

approaches in micro scale fluid dynamics (e.g. Molecular Dynamics, Monte Carlo simulation etc.). 

Micropolar fluids do not sustain a simple shearing motion, where only one component of velocity 

is present. In the context of rotating flows, they provide both an assessment of the micro-scale 

rotary motions and also the influence of micro-structural characteristics on global rotational 

motions. The interest in the present novel investigation arises from a desire to elaborate the 

collective influence of primary and secondary flow from a spinning rigid body (plate) when the 

boundaries are subjected to slow rotation. Largely motivated by geophysical and petrochemical 

engineering systems, early studies of micropolar transport phenomena from rotating bodies were 

presented by Rao et al. [25], Ramkissoon [26], Kirwan and Chang [27] and Sastry and Rao [28]. 

Few recent related studies of micropolar and nano fluid transport from stretching surface are 

presented by Mohanty et al. [29], Mishra et al. [30], Rout et al. [31], Baag et al. [32]. Arifuzzaman 

et al. [33], Bég et al. [34], also Williamson fluid flow behaviour for linearly stretched surface was 
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examined by Khan et al. [35]. These investigations were however confined to fluid flow showing 

that generally the presence of micropolar elements enhances momentum boundary layer thickness.  

One of the earliest comprehensive analyses of micropolar thermal convection from a spinning body 

was conducted by Gorla and Takhar [36] who also considered heat generation effects. They showed 

numerically that the momentum, angular momentum (gyration) and thermal boundary layers grow 

with centrifugal forces. Gorla [37] subsequently analyzed the non-similar mixed convection of a 

micropolar fluid from a rotating cone, exploring the influence of microrotation boundary conditions 

on velocity, micro-rotation and heat transfer distributions. The rotationally symmetric flow of 

micropolar fluids from a rotating disk was studied by Nazir et al. [38] using the successive over 

relaxation (SOR) method. Deng et al. [39] presented effects of pipe rotation on dynamic hydro 

cyclone. Very recently Gajjela et al. [40] derived analytical solutions for Bejan number in 

magnetized micropolar rotating annular flow. Periodic magnetic field effect on gray nanofluid 

using EFDM (explicit finite difference method) was studied by Biswas et al. [41]. Maxwell fluid 

flow in presence of nano-particle was examined by Arifuzzaman et al. [42]. Jeffrey fluid flow with 

the impact of thermal radiation and Joule heating was analyzed by Kumar et al. [43] Entropy 

generation analysis for radiative micropolar fluid was presented by Srinivas et al. [44]. 

 These simulations have generally considered steady-state flows. However, many materials 

processing systems feature oscillatory flow characteristics induced by periodic motions of the 

boundary. Periodic flows and judicious selection of oscillation frequency can aid in the diffusion 

of species and transport of heat. This can be critical in certain flow reactor designs using non-

Newtonian liquids [45]. Many theoretical studies on oscillatory mutli-physical flows have been 

communicated in recent years. Bég et al. [46] derived asymptotic solutions for oscillatory Couette 

channel hydromagnetic flow with inclined magnetic field and porous medium drag effects. Reis et 

al. [47] reported both analytical and experimental results for unsteady oscillatory hydrodynamics 

in a screening reactor. Bhargava et al. [48] presented finite element solutions for periodic reactive 

flow, heat and mass diffusion in porous media with cross diffusion effects. Bég et al. [49] obtained 

asymptotic solutions for oscillating hydromagnetic flow and heat transfer in couple stress liquids 

in a spinning bioreactor channel configuration. Maqbool et al. [50] presented Fourier series 

solutions for a variety of oscillatory magnetohydrodynamic channel flows, also considering 

rotational body force and both Newtonian and non-Newtonian material models. Oscillatory 

micropolar flows in the annular region of two concentric spheres were examined by Iynger and 

Geeta vani [51]. Nayak et al. [52] examined buoyancy effects in free convective MHD flow. 

Buoyancy effects on magnetic oscillatory flow of micropolar fluids were reported by Kim and Lee 
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[53] and Modather et al. [54]. Shamshuddin et al. [55] computed cross-diffusion effects on transient 

dissipative micropolar free convection flows using a finite element technique. 

In the present investigation we generalize and extend existing studies [15,16,17,18] to consider 

the combined effects of Soret and Dufour cross diffusion and viscous dissipation on radiative 

magnetohydrodynamic micropolar flow, heat and mass transfer from a rotating vertical plate 

adjacent to a porous medium. The non-dimensional conservation equations are solved with a 

Galerkin finite element method. The effect of various physical parameters on the translational 

primary and secondary velocity, primary and secondary micro-rotation velocity, temperature and 

concentration profiles as well as on local skin friction coefficient, wall couple stress, Sherwood 

number and Nusselt number are tabulated. Validation of the analysis has been performed by 

comparing the present results with those of [15,16, 17]. The current study is relevant to high 

temperature electromagnetic rheological flows in energy generators and magneto-rheological 

materials fabrication systems (where thermal radiation heat transfer is also significant) and has not 

appeared in technical literature thus far.  

 

2. Mathematical Modelling 

Unsteady natural convective flow, heat and mass transfer of an electrically conducting 

incompressible micro-polar fluid from a vertical plane considered. The vertical plate is assumed to 

be subjected to a constant heat flux, wq  and a constant concentration gradient, wm  also plate and 

fluid like in the zx  plane and both are rotating in unison with constant uniform angular velocity 

 about the z -axis with a velocity  tnu cosrU   1 . Initially at time 0t  both the plate and 

fluid are at rest and are maintained at a uniform temperature T and concentration C . At time 0t

, the plate starts moving in the x  -direction with uniform velocity rU  in its own plane, thereafter 

the plate is maintained at constant temperature wT and concentration wC .These values are assumed 

to be greater than the ambient temperature T  and concentration C .The physical configuration is 

illustrated in Fig. 1. Darcy’s law is assumed which is valid for low Reynolds number transport. A 

magnetic field of uniform strength 0B is applied in a direction parallel to the z axis which is 

perpendicular to the flow direction. It is assumed that in comparison to the applied magnetic field, 

induced magnetic field is negligible. The magnetohydrodynamic (MHD) body force term is derived 

from an order of magnitude analysis of the full Navier-Stokes equation. It is also assumed that 

applied or polarized voltage is neglected so that no energy is added or extracted from the fluid by 

electrical means. The fluid is considered to be a gray, absorbing-emitting but non-scattering 

medium and the Rosseland approximation is used to describe the radiative heat flux. The radiative 
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heat flux in the x  direction is considered negligible in comparison with that of zdirection. Both 

wall temperature and concentration vary with the distance along the plate and they are always 

greater than their uniform ambient values existing far from the plate surface (boundary layer free 

stream). Viscous dissipation is present as Soret and Dufour cross-diffusion effects. Since the plate 

is of infinite extent and electrically non-conducting all physical quantities, except pressure, depend 

on zand t  only, that is 0////  yvxvyuxu   and so forth. 

 

 
Fig.1. Geometry and coordinate system of the problem 

 

The governing equations that describe the physical situation can be written as [15,16,17, 18] 
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The primary and secondary angular momentum equations  
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The energy equation 
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The concentration equation 
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The following spatial and temporal boundary conditions are prescribed as  
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The oscillatory plate velocity assumed in Eq. (8) is based on [56], Integrating the continuity 

equation (1) for variable transpiration (lateral mass flux) velocity normal to the plate, a convenient 

solution emerges as: 

0ww                                                                                                                                         (9)                                                                                                             

Where 0w is the normal velocity at the plate 00 w  for suction, 00 w for blowing and 00 w for 

impermeable plate, Introducing the following non-dimension variables 
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Using dimensionless variables (10) into equations (1) - (7) yield the following dimensionless 

partial differential equations 
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The decoupling form for both Dufour and Soret effects (cross diffusion equations) are as 

follows 
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The boundary conditions can be written in non-dimensional form as follows: 
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For materials processing operations, the physical quantities of principal interest are the wall 

skin-friction components (plate shear stress), wall couple stress components (micro-rotation 

gradient), Nusselt number (wall heat transfer rate) and Sherwood number (wall mass transfer rate): 

Skin-friction components (primary and secondary) are obtained as: 
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In addition to that rate of heat transfer and rate of mass transfer at the surface of wall are  
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Converting (18)- (21) in non-dimensional for are obtained as follows 

Skin-friction components (primary and secondary) are obtained as 
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Wall couple stress components (primary and secondary) are computed as: 
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The plate surface rate of the heat transfer i.e. Nusselt number emerges as: 

 0

xRe
Nu                                                                                                                                 (24) 

The plate surface rate of mass transfer i.e. Sherwood number is calculated with:  
  

 0
xRe

Sh                                                                                                                                   (25) 

Where /x
r

UxRe  is the local Reynolds number, it is important to note that the present 

simulation extends the conventional studies by including a secondary component for the wall 

couple stress function. This allows further sophistication in analyzing the micro-element gyration 

field near the plate surface, a characteristic which is usually only addressed by a single couple stress 

function as noted by Eringen and many others. we also note that the micro-rotation boundary 

conditions in (17) reflect the physically realistic conditions wherein the wall gradient of the 

gyration vector must approach zero at the wall. This accommodates the framework of boundary 

layer growth at the wall, which is violated by the often-simple reduction to a vanishing micro-

rotation boundary condition. Micro-element rotary motions will be inhibited at the wall but not 

completely eliminated. The micropolar theory model’s fluids comprising non-deformable micro-
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elements. The local effect arising from the intrinsic motion and the microstructure of fluid elements 

in micropolar fluids are therefore taken into account not only in the angular momenta field 

equations but also in the boundary conditions (17).  

    

3. Finite Element Solution 

3.1 Finite Element Method 

The set of time-dependent, reduced, non-dimensional, coupled partial differential equations 

(24) -(27) subject to boundary conditions (28) are nonlinear, coupled and therefore cannot be solved 

analytically. It is equally versatile at solving Newtonian and non-Newtonian problems. The 

variational form is particularly popular for fluid mechanics simulations and general details of this 

methodology are available in many textbooks Reddy [57], Bathe [58]. Some recent examples of 

applications with associated computational details of finite element modelling of non-Newtonian 

magnetohydrodynamic flows include unsteady micropolar flow studies employing FEM include 

magnetic micropolar nanofluid cavity flow [59] and micropolar flow from an oblique surface [60]. 

 Discretization of the infinite fluid domain into finite elements  

 Derivation of element equations 

 Assembly of Element Equations 

 Imposition of boundary conditions 

 Solution of assembled equations 

 

3.2 Variational Formulation 

The variational formulation associated with Eqs. (11) - (16) over a typical two-node linear 

element  1ez,ez  is given by: 
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Here ,1w ,2w 3w , 4w , 5w and 6w are arbitrary test functions and may be viewed as the variations 

in ,u ,v ,1 ,2 , and  respectively, and 
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3.3 Finite Element Formulation 

The finite element model may be obtained from Eqs. (32) - (37) by substituting finite element 

approximations of the form: 
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In our computations, the shape functions for a typical element  1ee z,z , the global 

coordinates are represented as below 
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In local coordinates we considered linear element for which p=2 represented as follows 
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The finite element model of the equations for the  element thus formed is given by 
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Where     mnmn MK ,  and                  meeeeeeeeeeeee band,,,v,u,,,,,v,u   2121  m, 

n=1,2,3,4,5,6) denote the set of matrices of order 22  and 12  respectively and prime )( 

indicates
dz

d . These matrices are defined as follows: 
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In general, to verify that the converged solutions are indeed correct, i.e. to guarantee grid 

(mesh) independency, a grid refinement test is carried out by dividing the whole domain into 

successively sized grids 81x81, 101x101 and 121x121 in the z-axis direction. Furthermore, the 

finite element code is run for different grid sizes and for a grid size of 101x101 the solutions are 

observed to achieve mesh independence. Therefore, for all subsequent computations, a grid size of 
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101 intervals is elected, with equal step size 0.01. At each node 6 functions are to be evaluated and 

after assembly of element equations, a set of 606 non-linear equations are obtained. These are 

solved with an iterative scheme by introducing the boundary conditions. Finally, the solution is 

assumed to be convergent whenever the relative difference between two successive iterations 

attains a prescribed value i.e. the iterative process is terminated when the following condition is 

fulfilled: 

6101  

j,i

nn                (48) 

where  ,,,,v,u 21 and n denotes the iterative step. This criterion maintains high 

accuracy for coupled multi-physical boundary layer equations. Once the key variables are 

computed, a number of wall gradient functions may be automatically evaluated.    

                                                                     

4. General Numerical Validation with FEM 

To verify accuracy of the generalized micropolar model with all parameters invoked. We 

employed the efficient finite element method (FEM) utilizing special symbolic packages such as 

MATLAB. FEM has found great popularity in modern engineering sciences and has been 

implemented in non-Newtonian flows. Table 1-3 presents the comparison between small 

perturbation method and FEM solutions for selected values of certain parameters. Excellent 

correlation is obtained. Confidence in the FEM solutions for the general micropolar transport model 

is therefore very high. 

 

Tab 1. Comparison of  ,
f

C wC when 00  Sr,Ec  

 Olajuwon and 

Oahimire [15] 

        FEM results 

F  S  Du  R  f
C  wC  f

C  wC  

0.5 2.5 0.02 0.5 -10.5322 3.6452 -10.533392 3.650223 

1.0 2.5 0.02 0.5 -10.0297 3.7879 -10.029084 3.787772 

0.5 5.0 0.02 0.5 -12.9772 6.5960 -12.976632 6.598060 

0.5 2.5 1.0 0.5 -4.9692 3.7042 -4.967168 3.703866 

0.5 2.5 0.02 1.0 -9.5204 7.2903 -9.518891 7.285592 
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Tab 2. Comparison of ,
f

C wC ,
x

Re/Nu and 
x

Re/Sh when 00  Du,Ec  

                             Kundu et al. [16]                            FEM results 

S  f
C  wC  x

Re/Nu

 

x
Re/Sh

 

f
C  wC  x

Re/Nu  
x

Re/Sh

 

4.0 15.8370 2.73432 1.7040 0.4267 15.837004 2.734323 1.704011 0.426702 

5.0 8.65130 1.52070 2.1300 0.5333 8.651306 1.520705 2.130014 0.533307 

6.0 3.76030 0.92140 2.55697 0.6400 3.760304 0.921407 2.556974 0.640011 

 

Tab 3. Comparison of ,
f

C wC
x

Re/Nu  and
x

Re/Sh when 0000  Du,Sr,Ec,B  

                Bakr and Chamkha [17]                                FEM results 

R  K  M
 

S  f
C  wC  

x
Re/Nu

 

x
Re/Sh

 

f
C  wC  

x
Re/Nu

 

x
Re/Sh

 

0.2 1.5 0.5 1.0 2.468 -0.18 1.0 0.22 2.466703 -0.175792 1.0 0.22 

0.4 1.5 0.5 1.0 3.818 -0.615 1.0 0.22 3.809744 -0.614580 1.0 0.22 

0.2 2.0 0.5 1.0 2.812 -0.144 1.0 0.22 2.810074 -0.143222 1.0 0.22 

0.2 1.5 1.0 1.0 1.771 -0.148 1.0 0.22 1.765881 -0.146577 1.0 0.22 

0.2 1.5 0.5 2.0 1.917 -0.401 1.0 0.44 1.916099 -0.393630 1.0 0.44 

 

Tab 4. Effect of  M,K,R,S, on 
fx

C ,
fy

C , wxC and wyC  

  S  R  K  M  fx
C  

fy
C  

wxC  wyC  

1.0 1.0 1.0 0.5 0.5 2.14534 0.43562 -0.038431 -1.23485 

2.0 1.0 1.0 0.5 1.0 2.56235 0.74321 -0.022343 -1.32444 

1.0 2.0 1.0 0.5 1.0 1.87355 0.42033 -0.04108 -1.54321 

1.0 1.0 2.0 0.5 1.0 2.96542 0.36673 -0.056030 -1.06900 

1.0 1.0 1.0 1.0 1.0 10.55431 4.42901 -0.08200 -1.69003 

1.0 1.0 1.0 0.5 2.0 7.79678 2.35672 -0.046723 -1.64451 
 

Tab 5. Effect of Sr,Du,Ec,F on 
x

Re/Nu and 
x

Re/Sh  

F  Ec  Du  Sr  
x

Re/Nu  
x

Re/Sh  

0.5 0.01 0.03 0.5 1.58731 0.35791 

1.0 0.01 0.03 0.5 0.67322 0.34512 

0.5 0.5 0.03 0.5 0.87033 0.44873 

0.5 0.01 2.0 0.5 1.23972 0.81321 

0.5 0.01 0.03 1.0 1.52095 0.19364 
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Inspection of Tables 4 reveals that a combination of negative and positive values, are observed 

for the primary and secondary components of skin friction and wall couple stress. There is therefore 

significant fluctuation in velocity and micro-rotation fields at the wall when secondary flow is 

present. This behavior is not captured in the absence of secondary effects. Table 5 reveals that as 

radiation parameter increases both Nusselt number and Sherwood number decrease in magnitude. 

Moreover, as Eckert, Dufour, Soret numbers increases, simultaneous decrease is observed in 

Nusselt number and increase in Sherwood number. 

 

5. Graphical Results and Discussions 

In order to gain a clear insight into the physical problem, numerical calculations for 

distribution of combined primary and secondary velocity, combined primary and secondary 

microrotation (angular) velocity, temperature and concentration for different values of the control 

parameters are illustrated in Figs. (2) - (17). In order to study the effects of pertinent parameters in 

fluid flow explicit computations were carried out by varying micro-rotation parameter ,

dimensionless magnetic body force parameter ,M permeability parameter ,K rotation parameter ,R  

suction parameter ,S  radiative-conduction parameter ,F Eckert number ,Ec  Dufour number ,Du  

and Soret number .Sr  The following default parameter values are implemented in all the finite 

element computations ,.,/nt 0102   ,n 10 ,Gm,Gr 410  ,.Sc,K,.M 60550  70.Pr 

.We do not explicitly consider oscillatory velocity influence since this has been thoroughly 

appraised in other studied – see Ganapathy [56]. 

 
Fig.2. Velocity profiles for microrotation 

parameter. 

 
Fig.3. Angular velocity profiles for 

microrotation parameter. 

Variations of viscosity ratio parameter   on v,u  presented in the Fig. 2. With increasing 

vortex viscosity of micro-elements, u distribution is significantly reduced with transverse 
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coordinate (normal to the plate) with minimum acceleration computed a short distance from the 

plate surface. Conversely v is strongly accelerated and back flow is consistently observed indicating 

flow reversal. In addition, the angular velocity (Microrotation) distribution profiles are presented 

in the Fig. 3 presents consistent variations with an increment of    i.e., 1 increases and 2  

decreases, which occurs due to the presence of increasing concentration of micro-elements which 

enhances vortex viscosity therefore also damps the gyratory motions of micro-elements. The 

maximum influence is at the wall since with greater concentration of micro-elements, these micro-

elements are physically impaired from rotating near the boundary more than anywhere else in the 

fluid regime. This effect is progressively reduced with distance from the plate. 

 
Fig.4. Velocity profiles for magnetic 

parameter. 

 
Fig.5. Angular velocity profiles for magnetic 

parameter.

 

Fig. 4 indicate that with increasing magnetic parameter ,M  there is a decrease in u  and 

increasing v . The Lorentz magnetic drag force i.e. -Mu in eqn. (11) is generated by the application 

of magnetic field in the z-direction (transverse to the primary velocity direction). This retards the 

primary flow whereas it accelerates the secondary flow via re-distribution in linear momentum. 

Significant flow alteration is therefore achieved with even a relatively weak increase in magnetic 

field. Maximum primary velocity and minimum secondary flow velocity therefore respectively 

correspond to 0M (vanishing magnetic field i.e. electrically non-conducting micropolar flow 

case). Fig. 5 present the influence of magnetic body force parameter M on 1 and 2 .The Lorentz 

drag component -Mv in the secondary linear momentum eqn. (12) as expected induces a marked 

retardation in primary angular velocity via the coupling term,  z/  1 which indirectly 

influences 1 . 2  increases with the increase of M  since the term  z/  2  couples the 
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secondary angular momentum field to the primary linear momentum field and the drag component, 

-Mu.  

 

 
Fig.6. Velocity profiles for permeability 

parameter. 

 

 
Fig.7.  Angular velocity profiles for 

permeability parameter. 

 

Fig. 6 present the impact of the porous medium permeability parameter (K) on both v,u . This 

parameter characterizes the hydrauic transmissivity of the porous medium. It arises in the Darcian 

drag force term in the primary and secondary linear momentum equations (11) and (12), via the 

terms,    vK/anduK/ 11  .With increasing permeability, the regime solid fibers progressively 

decrease. The Darcian bulk impedance to flow is therefore also decreased. This results in 

acceleration in the u and deceleration in v . The presence of a low permeability porous medium 

therefore damps the primary flow and boosts the secondary flow and vice versa for larger 

permeability media. Fig. 7 depicts the response in the angular velocity (micro-rotation) components 

to variation in permeability parameter (K). 1  is enhanced with greater permeability parameter i.e. 

the spin of micro-elements is damped with increasing porous material fibers. Conversely the 2 is 

accentuated indicating that micro-element spin (gyratory motion) is decreased with greater 

permeability. 
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Fig.8. Velocity profiles for Rotation 

parameter. 

 
Fig.9. Angular velocity profiles for Rotation 

parameter. 

Figs. 8-9 present the variations in v,u  and 21  ,  with rotation parameter, R . The results show 

that rotation parameter R has minor decreasing effect on the u and conversely enhances the v . A 

reverse phenomenon is observed in 21  , i.e. 1 increases and 2 decreases as R increases. The 

rotational parameter, R ,features in the so-called “cross flow terms”, Rv in the primary 

momentum eqn. (11) and Ru in the secondary momentum eqn. (12). As R  increases the 

centrifugal force increases (faster angular velocity of rotation of the plate,  ). The centrifugal 

effect influences each velocity field via the rotational body force term in the other velocity field 

equation. Although both terms are negative, only primary linear flow is decelerated and the 

compensation in momentum assists the secondary flow field.  The micropolar coupling terms in 

both linear momenta equations i.e.   221 z/u  ,   221 z/v    and additionally the angular 

momentum coupling terms, viz.  z/  2  and,  z/  1 enable the rotational body force 

effect to impart a considerable influence on the micro-rotation field components. The primary spin 

of micro-elements is retarded whereas the secondary spin is effectively accelerated. Gyration is 

therefore substantially modified by rotational (centrifugal) body force.  
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Fig.10. Velocity profiles for Suction 

parameter. 

 
Fig.11. Angular velocity profiles for Suction 

parameter. 

 

Figs. 10-11 present the response in v,u  and 21  , profiles for various values of suction 

parameter S against spanwise coordinate, z .It is noticed that increasing suction significantly 

decreases u  i.e. decelerates the boundary layer flow. Greater suction corresponds physically to 

removal of micropolar fluid via the wall. This destroys momentum, and causes the boundary layer 

to adhere to the wall thereby stabilizing boundary layer growth due to which the primary velocity 

of the fluid decreases, i.e., the flow is decelerated. But, the opposite behavior is produced by v . 

However, opposite behaviour is observed in case of injection. We note that the case 0S

corresponds to blowing (mass injection) at the wall and is not relevant to the current study and has 

therefore not been addressed. A similar behaviour is observed in case of 21  ,  i.e. 1 decreases 

because angular momentum field (micro-rotation) retards gyratory motion (spin) of micro-elements 

which leads to a decrease and 2  accelerates gyratory motion (spin) of micro-elements which leads 

to increase.  

 
Fig.12. Temperature profiles for Suction 

parameter. 

 
Fig.13. Concentration profiles for Suction 

parameter. 
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Figs. 12-13 depict the evolution in temperature    and concentrations   profiles with various 

suction parameter  S values. Stronger wall suction significantly diminishes both temperature and 

concentration distribution, although a greater spread in profiles is computed over the same variation 

in suction parameter for concentration. Thermal boundary layer thickness and concentration 

(reactive solute) boundary layer thickness is therefore both reduced with enhanced wall suction. 

Again, asymptotically smooth convergence of profiles is achieved in the free stream confirming 

the imposition of a sufficiently large infinity boundary condition in the finite element program. 

 

 
Fig.14. Temperature profiles for Thermal radiation parameter.

 
Fig.15. Velocity profiles for Eckert number 

 
Fig.16. Temperature profiles for Eckert 

number. 

 

Fig. 14 illustrates the influence of radiation-conduction parameter F  on the temperature (). 

Increasing F values correspond to a greater contribution of thermal radiation heat transfer relative 

to thermal conduction heat transfer k/TF  3316  . Fig. 13 indicates that with an increase of 

F the temperature profiles increases and this also increases thermal boundary layer thickness. The 
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F parameter arises solely in the dimensionless energy conservation equation, in the augmented 

thermal diffusion term,   2
2

11
z

F
Pr 




 . This serves to energize the flow with 1F  for which thermal 

radiation contribution exceeds thermal conduction contribution. The supplementary heat flux 

assists in thermal transfer between fluid molecules. The case 0F  physically represents vanishing 

thermal radiation and purely thermal conduction heat transfer and is therefore associated with 

minimal temperatures in the system. 

Figs. 15-16 illustrate the influence of the Eckert number i.e. viscous dissipation parameter 

(Ec) on velocity and dimensionless temperature profiles. Ec expresses the relationship between the 

kinetic energy in the flow and the boundary layer enthalpy difference. It embodies the conversion 

of kinetic energy into internal energy by work done against the viscous fluid stresses. It is an 

important parameter for describing real working fluids in MHD energy generators and materials 

processing where dissipation effects are not trivial. Positive Eckert number corresponds to cooling 

of the wall (plate) and therefore a transfer of heat from the plate to the micropolar fluid. Convection 

is enhanced and we observe in consistency with that the fluid is accelerated i.e. linear (translational) 

velocity is increased in the micropolar fluid. Temperatures are also enhanced markedly with greater 

Eckert number, as shown in Figure 15 since internal energy is increased due to kinetic energy 

dissipation.  

 

 
Fig.17. Temperature profiles for Soret and 

Dufour numbers. 

 
Fig.18. Concentration profiles for Soret and 

Dufour numbers. 

 

Figs. 17-18 illustrate non-dimensional temperature and concentration profiles for different 

values of  Sr  and Du .It is clearly observed from the graph that the temperature distribution 

decreases whereas concentration profiles increase throughout the boundary layer with elevation in 

Sr  and a decrease in Du . This is caused as a result of the mass flux created by the temperature 
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gradient and loss of temperature of the fluid. The concentration of the fluid increases due to the 

enhanced thermal diffusion rate. Furthermore, a diffusing species with higher values of Soret 

number  Sr  has a tendency to increase concentration profiles whereas thermal species with lower 

Dufour number  Du  values has the tendency of depreciating temperature profiles in the flow 

field. Hence temperature and concentration distributions are more influenced with the values of Sr  

and Du . 

 

6. Concluding Remarks 

An unsteady-state mathematical model has been presented for incompressible, free convection 

flow from a rotating vertical porous plate in a dissipative micropolar fluid with cross diffusion 

effects. Via non-dimensional quantities a boundary value problem has been derived in partial 

differential equation form, which are solved using Galerkin finite element method with weighted 

residual approach. Verification of solutions has been conducted against published literature. 

Selected computations have been visualized graphically and invoked parameter results are 

tabulated. The study has shown that: 

 Translational (linear) (primary) flow is accelerated with increasing permeability parameter 

whereas it is damped (decelerated) with increasing microrotation (coupling) parameter, magnetic 

field parameter, wall suction parameter and rotation (centrifugal) parameter. But reverse 

phenomenon is observed in case of secondary flow. 

 Angular velocity (gyration component) (primary) increases with microrotation (coupling) 

parameter and permeability parameter whereas the converse effect (deceleration) is induced with 

increasing magnetic body force parameter, rotation parameter and wall suction. But reverse 

phenomenon is observed in case of secondary flow. 

 The temperature of the micropolar fluid and thermal boundary layer thickness are both 

increased with increasing conduction-radiation parameter and dissipation parameter (Eckert 

number) whereas the converse effect is induced  

 Temperature distribution decreases whereas concentration profiles increase throughout the 

boundary layer with elevation in Soret and a decrease in Dufour number. 
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Nomenclature 

0B   applied magnetic field strength 

f
C  skin friction coefficient     

mC  wall couple stress  

pC   specific heat at constant pressure [ 11  KKgJ ]   

sC   concentration suscepectability [ 3mmol ]  

wC  concentration of the solute at the plate [ 3mmol ] 

C  free stream concentration [ 3mmol ] 

mD  molecular diffusivity [ 12 sm ] 

Du  Dufour number  

Ec   Eckert number  

F   radiative-conduction parameter  
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g   acceleration due to gravity [ 1ms ] 

mG solutal Grashof number 

rG   Grashof number 

J    micro inertia coefficient 

K   permeability parameter 

tK   thermo-diffusion ratio [ 12 sm ]  

wm  concentration gradient  

n   non-dimensional oscillation frequency  

Nu   Nusselt number  

p   constant pressure  

rP   Prandtl number   

rq   radiative heat flux [ 2mW ]  

wq   constant heat flux  

R   rotation parameter  

xRe  local Reynolds number 

S   suction parameter  

Sc   Schmidt number  

Sc   Schmidt number  

xSh  Sherwood number 

Sr    Soret number  

t  dimensionless time  

T   temperature of the field in the boundary layer [ K ] 

mT   mean fluid temperature [ K ] 

wT   wall temperature of the fluid [ K ]  

T  temperature of the fluid in free stream [ K ]  

v,u   primary and secondary velocities  

21  ,  primary and secondary angular velocities 

x   axis along the plate [ m ] 

y  axis perpendicular to the plate [ m ] 
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Greek symbols 

    Thermal diffusivity 

    microrotation parameter 

T   volumetric coefficient of concentration expansion [ 1
K ] 

c   volumetric coefficient of concentration expansion [ 1
K ] 

  density of micropolar fluid [ 3mkg ] 

  thermal conductivity [ 11  KWm ] 

    mean absorption coefficient [ 1m ] 

  Stefan-Boltzmann constant [ 42  KWm ] 

   Kinematic viscosity [ 12 sm ] 

   fluid dynamic viscosity 

   coefficient of gryo-viscosity [ 11  smkg ] 

     gyroscopic viscosity 

     small quantity  

    dimensionless temperature 

    dimensionless concentration 

   shape function 

   microrotation component 
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