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Abstract  

MHD viscoelastic fluid flow through a vertical flat plate in the presence of Soret and Dufour 

effect has been studied. The usual transformations have been applied to obtain the non-

dimensional, partial coupled non-linear momentum, temperature and concentration equations. 

Explicit finite difference technique has been applied to solve the problem numerically. To obtain 

the restriction of parameters, stability and convergence criteria have been analyzed. The 

numerical computations have been carried out for fluid velocity, temperature concentration, local 

shear stress, Nusselt number, Sherwood number, average shear stress, average Nusselt number 

and average Sherwood number. The obtained results have been illustrated graphically. Finally a 

qualitative comparison has been shown in tabular form. 
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1. Introduction 

Newton’s law of fluid dynamics has divided the fluid into two groups. One type is 

Newtonian fluid which has some scope to testify a fluid to be a Newtonian fluid or not. So many 

fluids in industrial process and in nature show unexpected and interesting flow patterns which 
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outside the scope the Newtonian fluid dynamics. This type of fluids is known as non-Newtonian 

fluid. 

The most common non-Newtonian fluid is viscoelastic fluid. This research paper is 

concerned with viscoelastic fluids. It has two properties, one is viscous property and another one 

is elastic property and so it is named as viscoelastic fluid. Its importance is increasing day by day 

due to its many engineering, biological, industrial and chemical aspects.  Some common 

viscoelastic fluids are engine oils, paints, honey, shampoo, ointments, gels, molten plastics, blood 

and so on. These appear in many industrial process, chemical reaction and pharmaceutical 

industries. 

Some of the researchers have studied about its nature, some studied its structure or 

deformation, some studied its flow patterns (i.e., velocity, temperature, density, pressure and 

etc.), and some investigated the effects of various flow parameters on this fluid. The analysis of 

viscoelastic fluids was started about 1950. Oldroyd [1], Beard and Walters [2] and Rajagopal et 

al. [3] are considered the Pioneer of viscoelastic fluids (second grade fluids), who have developed 

the boundary layer theory for the second grade fluids. This boundary layer theory for the second 

grade fluids has motivated many researchers to really explore this kind of fluids with various 

conditions. Rajagopal et al. [3] studied boundary layer flow of a viscoelastic fluid over a 

stretching sheet. Dandapat [4] investigated flow and heat transfer in a viscoelastic fluid over a 

stretching sheet. Kumar et al. [5] studied flow and heat transfer of a viscoelastic fluid over a flat 

plate with a magnetic field and a pressure gradient. 

Dash et al. [6] investigated finite difference analysis of hydromagnetic flow and heat transfer 

of an elastico-viscous fluid between two horizontal parallel porous plates. Islam and Alam [7] 

have investigated Dufour and Soret Effects on unsteady MHD Free Convection and mass transfer 

fluid flow through a porous medium in a rotating system. Khan et al. [8] studied convective heat 

transfer in the flow of visco-elastic fluid in a porous medium past a stretching sheet. Attia and 

Ewis [9] studied unsteady MHD Couette flow with heat transfer of a viscoelastic fluid under 

exponential decaying pressure gradient. Recently Gbadeyan et al. [10] examined heat and mass 

transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching 

vertical surface in a porous medium filled with a viscoelastic fluid in the presence of magnetic 

field. Hossain and Alam [11] solved the Gbadeyan et al. [10]’s model by implicit finite difference 

method for unsteady case.  
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Our objective is to extend the work of Hossain and Alam [11] for unsteady two dimensional 

case and to solve the problem numerically by explicit finite difference method. Also, this work 

has been done for Soret and Dufour effects in the presence of magnetic field on two dimensional 

unsteady flow of an incompressible viscoelastic fluid through a vertical flat plate. 

2. Mathematical Formulation 

     The fluid is assumed to be 

incompressible, unsteady and laminar flow 

of a viscoelastic fluid moving through a 

vertical flat plate in the presence of 

magnetic field. The fluid is also 

experienced of Soret and Dufour effects. 

The positive x  coordinate is measured 

along the plate in the direction of fluid 

motion and the positive y coordinate is 

measured normal to the plate. A uniform 

magnetic field B is imposed to the plate 

)0( =y to be acting along the -y axis 

which is assumed to be electrically non-conducting. Assumed that )0,,0(),,( 0BBBB zyx ==B is 

the magnetic field vector and zyx BBB , be the components of the magnetic field in the 

zyx ,, direction respectively. Also it is assumed that the uniform velocity of the fluid is 0U with 

the wall temperature wT and wall concentration wC along the plate. ¤T  and ¤C represent the 

temperature and concentration outside the boundary layer. The physical model of this problem is 

shown in Fig. 1.                                                                                              

On the basis of the above state assumptions and the physical model of the fluid motion is 

governed by the given equations; 
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Fig. 1: Physical model with coordinate system 

system                                                                                   
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The boundary conditions are; 

0Uu= , 0=v , wTT = , wCC= at 0=y                                                                                   (5) 

0­u , 0­
µ

µ

y

u
, ¤­TT , ¤­CC  as ¤­y  

The following dimensionless variables that are used to obtained dimensionless governing 

equations (1)- (4) as; 
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        The following dimensionless equations have been obtained by using the above non-

dimensional quantities; 
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         where,
rG is the Grashof number,

mG is the modified Grashof number, M is the Magnetic 

parameter, K is the dimensionless viscoelastic parameter, rP is the Prandtl number, cE  is the 

Eckert number,
uD  is the Dufour number, rS is the Soret number and

cS denotes the Schmidt 

number. 

The corresponding non dimensional boundary conditions are;  

1=U , 0=V , 1=q , 1=f at 0=Y                                                                                           (10) 
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0­U , 0­V , 0­q , 0­f  as ¤­Y  

3. Shear Stress, Nusselt Number and Sherwood Number 

From the velocity, the effects of various parameters on the local and average shear stress 

have been calculated. Local shear stress 
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temperature field, the effects of various parameters on the local and average heat transfer 

coefficients have been investigated. Local Nusselt number,  
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respectively. From the concentration field, the effects of various parameters on the 

local and average mass transfer or Sherwood number coefficients have been analyzed. Local 
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4. Numerical Analysis 

The governing non-dimensional 

continuity, momentum, energy and 

concentration equations (6)-(9) 

respectively with associated boundary 

conditions have been solved 

numerically by explicit finite 

difference technique. The rectangular 

region within the boundary layer is 

divided by some mash of lines parallel 

to X  and Y axes where -X axis is 

taken along the plate and -Y axis is normal to the plate as shown in Fig. 2. Here, the plate of 

Fig. 2: Finite difference grid system                                                                                   



29 

 

height )100(max =X  i.e. X varies from 0 to 100 and it is assumed that the maximum length of 

boundary layer is )35(max =Y  as corresponding to ¤­Y   i.e. Y varies from 0 to 35 have been 

considered. Consider 150=m  and 150=n  in X and Y directions. It is assumed that XD , YD  are 

constant mesh sizes along X and Y directions respectively and taken as follows, 

( )100067.0 ¢¢=D xX ; ( )35023. ¢¢=D yY  with the smaller time-step, 005.0=Dt . 

  

Let U¡,V¡,q¡and f¡ denote the values of  U ,V ,qand f at the end of a time-step 

respectively. An appropriate set of finite difference equations have been obtained as; 
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The initial and boundary conditions with the finite difference scheme are; 
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The numerical values of the local shear stress, Nusselt number and Sherwood number are 

evaluated by five-point approximate formula for the derivatives and then the average shear stress, 

Nusselt number and Sherwood number are calculated by the use of the Simpson’s 
3

1
 integration 

formula. 

The stability conditions of the problem are as furnished below as; 
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When tD and YD approach to zero then the problem will be converged. The convergence 

criteria of the problem are 19.0²rP and 19.0²cS . 

 

5. Results and Discussion 

Analytically it can not be solved the obtained non-linear, coupled partial differential 

equations. For this reason explicit finite difference technique has been applied to solve those 

equations numerically. To obtain the steady-state solutions of the computations, the calculation 

has been carried out up to dimensionless time, 120=t . The velocity, temperature and 

concentration profiles do not show any change after dimensionless time, 60²t . Therefore the 

dimensionless time, 60²t  is the steady state solution for this problem. Also for more accurate 

results (numerical and graphical) different mesh size has been considered and shown graphically 

in Fig. 3(a-c). It has been seen that the graphical representation of various dimensionless 

parameters have been reached its highest convergence when mesh size is taken as 

150=m and 150=n . Therefore various flow parameters have been illustrated graphically in Figs. 

(4-7) with dimensionless time 60=t and mesh size 150=m and 150=n . 

3(a)  (b)  
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(c)  

 

Fig.3. Illustration of steady state solution for 

00.2=rS at different time intervals with mesh 

size (a) 100=m and 100=n  (b) 

130=m and 130=n  (c) 150=m and 150=n .  

 

 

In Fig. 4(a-c) it has been shown the effect of Dufour number uD  on fluid temperature and 

Nusselt number and Sherwood number. Thermal boundary layer is found to increase in Fig. 4 (a) 

with the increase of Dufour number uD . 
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Fig.4 Illustration of (a) Velocity profiles (b) Local shear stress (c) Average shear stress for 

different values of Magnetic parameter M . 

    But the Nusselt number and average Nusselt number decrease with the increase of Dufour 

number uD  those have been shown in Fig. 4(b) and 4(c) respectively. 

 

The velocity profiles, local shear stress and average shear stress for various values of 

Magnetic parameter M  have been illustrated in Fig. 5(a-c). In those figures, fluid velocity, local 

shear stress and average shear stress decrease with the increase values of Magnetic parameter M . 

The effect of Soret number rS  on fluid concentration, Sherwood number and average 

Sherwood number has been shown in Fig. 5 (a-c). It is observed that fluid concentration increases 

as Soret number rS  increase. On the other hand, the Sherwood number and average Sherwood 

number have been decreased with the increase of Soret number rS . 
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Fig.5. Illustration of (a) Velocity profiles (b) Local shear stress (c) Average shear stress for 

different values of Magnetic parameter M . 

 

Viscoelastic parameter K  is the key parameter in this problem and the effect of this 

parameter has been shown in Fig. 7(a-c). In Fig. 7(a), with the increase of Viscoelastic parameter 

K  the fluid velocity has been decreased. Similar effect has been shown in Fig. 7 (b) and Fig. 7(c) 

that the local shear stress and average shear stress decrease with the increase of Viscoelastic 

parameter K .  
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Fig.6 Illustration of (a) Concentration profiles (b) Sherwood number (c) Average Sherwood 

number for different values of Soret number rS . 
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7(a)   (b)   
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Fig.7. Illustration of (a) Velocity profiles (b) Local shear stress (c) Average shear stress for 

different values of Magnetic parameter K . 

6. Comparison  

Qualitative comparison of the present results with previous results ( Gbadeyan et al. [10] ) 

are presented in tabular form. The accuracy of the present results is qualitatively good in case of 

all the respective flow parameters. Other results are not shown for brevity. 
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Table 1. Qualitative comparison of the present results with the previous results  

Increased 

Parameter 

Pervious results given 
by Gbadeyan et al. [10] 

Present results 

()hF¡  ()hq  ()hf  U  q f 

uD  Inc. Inc. Dec. Inc. Inc. Dec. 

M  Dec. Inc.  Dec. Inc.  

rS   Dec. Inc.  Dec. Inc. 

K   Dec.    Dec. 

7. Conclusions  

Viscoelastic fluid flow with Soret and Dufour effects through a vertical flat in the presence 

of magnetic field has been taken into account. The resulting governing systems of equations are 

solved by explicit finite difference method. The results are discussed for different values of 

important parameters Dufour number uD , Magnetic parameter M , Soret number rS and 

Viscoelastic parameter K . 

The important findings of this investigation from the above mentioned graphical 

representation are listed below;  

1. Fluid velocity, local shear stress, average shear stress 

have been decreased with the increase of Viscoelastic parameter K and Magnetic 

parameter M .  

2. Fluid Temperature and concentration have been increased with the increase of Dufour 

number uD and Soret number rS respectively. 

3. Nusselt number and average Nusselt number of the fluid have been decreased with the 

increase of Dufour number uD . 

4. Sherwood number and average Sherwood number of the fluid have been decreased with 

the increase of Soret number rS . 
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