
161

AMSE JOURNALS-AMSE IIETA publication-2017-Series: Advances B; Vol. 60; N°1; pp161-173

Submitted Jan. 2017; Revised March 15, 2017, Accepted April 15, 2017

Web Optimization of QUIC under Wireless Network

*Huang Cheng, *Lv Yongbo

*School of Traffic and Transportation, Beijing Jiaotong University

P. R. China, No.3 Shangyuancun Haidian District Beijing 100044, (gaffer.c@foxmail.com)

Abstract

With the development of wireless technology, many TCP-based HTTP applications are

running slow, especially under the wireless environment. This paper first analyzes the causes

of this situation, and then discusses the advantages of Google's experimental QUIC protocol in

wireless transmission and finds that QUIC is easy to extend and deploy, providing a good

framework for personalized optimization. This paper applies the QUIC framework and

presents a QUIC optimization algorithm for the VPN or LAN scenarios, which mainly

improves the congestion algorithm on the basis of QUIC. Through simulation tests, it is found

in the wireless environment with high latency and high packet loss rate, the

QUICMING-based HTTP applications perform significantly better than those based on TCP,

SPDY and default QUIC.

Key words

 UDP, HTTP, wireless network, QUIC

1. Introduction

With the widespread use of wireless networks, a lot of associated problems have emerged,

one of which is how to provide high-quality http services in a wireless network, especially in a

weak wireless network environment. In a wired environment, these are usually provided by

the TCP on the transport layer. However, in a wireless environment, especially in a weak

162

wireless environment, TCP is very slow. The TCP-based anti-congestion algorithm is not

suited to a wireless environment filled with mutations [1]; instead, it is more suitable for the

relatively stable access environment [2] [3]. The TCP retransmission is also designed to

prevent router congestion, and due to the characteristics of wireless communication, the high

air-interface latency and packet loss will seriously affect the overall transmission performance

of TCP [4] [5]. In addition, TCP also has other issues like stream multiplexing. In fact, these

problems have been identified and improvements have been made, like SCTP, SPDY and

HTTP 2.0 (similar to SPDY), etc.[6] [7], but each method has its own shortcomings. The

problem with SCTP is that it is a transport layer protocol that requires modification of the

protocol stack of the operating systems. For SPDY and HTTP 2.0 [8] [9] [10], the inherent

problems of TCP which they are based on cannot be resolved (TCP congestion algorithm,

HOL effect problem and the difficulty in updating and deploying TCP, etc.).

To this end, following SPDY and HTTP 2.0, Google proposed a new protocol QUIC [11]

[12]. The biggest difference between QUIC and the other two protocols is that it is based on

UDP, which can avoid the inherent problems of other protocols based on TCP and does not

have to modify the protocol stack of the operating system.

In this paper, we first analyze the characteristics of wireless environment and existing

http transmission methods and describe in detail the advantages of QUIC and its framework.

Then we improve the QUIC congestion algorithm, apply it in the QUIC framework and put

forward QUICMING. In addition to all the advantages of QUIC, QUICMING also has made

special optimization of VPN or LAN. If the network speed can be guaranteed, it will perform

even better. Then we compare the overall performance of QUICMING and TCP, HTTP 2.0

and default QUIC in Web http services in the weak wireless network environment. Finally, we

analyze the results.

2. Characteristics of Wireless Environment

There are various communication standards for wireless environment, among which

common ones are 3G, 4G and wifi, etc. Although they are very different in the concrete

163

implementation, they still have a lot in common due to the characteristics of the wireless

channel, such as sudden big changes, possible great latency and packet loss rate at the air

interface and centralized transmission of data packets [13]. The reasons for the above

problems include path attenuation, wireless retransmission mechanism, wireless coding

mechanism and wireless resource scheduling mechanism. In a wired environment, such

unstable conditions would not usually occur in the first hop of the access network.

3. Existing Common Methods

Currently, the methods mainly used to provide HTTP services include: TCP, SPDY,

HTTP 2.0 and self-implementation protocol, all of which are based on TCP. As TCP only

provides streaming services, it has the simplest function and easy to implement, but it has the

lowest efficiency in carrying the http protocol. SPDY and HTTP 2.0 are also based on TCP,

but with a lot of optimizations, especially in the http field, but they cannot avoid the inherent

problems of TCP.

3.1 Performance Analysis of TCP alone in the weak wireless environment

Due to the basic feature of TCP, a lot of problems cannot be solved. Next we will

elaborate on the specific reasons behind the problems.

1. TCP is difficult to update. There are also many optimized wireless TCP congestion

algorithms (WTCP etc.). Even if TCP has been well optimized (in fact, there are a lot of TCP

optimizations, many of which are very efficient), the optimized TCP protocol stack is difficult

to deploy on various machines, because TCP is on the transport layer, which is implemented

by the operating system. Most operating systems are updated every few years (XP has been

used for 16 years and is still in use), seriously dragging down the development of

optimizations. The upgraded system may have better TCP capabilities, but at the same time

may bring a lot of other problems, like the incompatibility with various hardware and

software. This has hindered the system from being upgraded in time - usually we will not be

so willing to upgrade the system kernel and thus we will not upgrade the TCP version. What is

164

more, communication technologies are also updated every few years, so the TCP optimization

deployment is always slower than the development of communication technologies. so TCP

optimization deployment speed is always slower than the development of communication

technology. As the operating system is underlying software, usually the complex TCP

optimizations will not be incorporated into the operating system. Many creative TCP

optimizations exist only in theory and cannot be applied in daily life. SCTP has the same

problem.

2. As TCP is implemented by the default of the operating system, it can hardly meet

various personalized needs. There are a great number of methods of and papers on TCP

optimization, but many of them are special optimizations for particular scenarios (e.g. wireless

environment) or applications. For an operating system, it is almost impossible to put them

within its own protocol stack, because in order to be convenient, stable and light, the operating

system will usually only provide the most basic implementation. At present, in the most

mainstream operating systems WINDOWS and Linux, TCP does not work very well in the

weak wireless network.

3. TCP uses IP address couple as the connection identifier. When the wireless network

connection fails, even if there are other backup links, there will still be a disconnection (for

example: the wifi is disconnected, but there is still a 4G connection). When the wifi is

disconnected, the context of TCP serving the transfer becomes invalid due to the identifier

connection failure and connection must be reestablished, which, However, is completely

unnecessary as 4G can still be used. The reestablishment is also a waste of resources.

3.2 Performance analysis of SPDY and HTTP 2.0 in the weak wireless

environment

Both SPDY and HTTP 2.0 are TCP-based methods. Though they offer additional

functions like transport stream multiplexing and header compression [14][15] and part of their

performance has been improved, they still have the TCP HOL effect – having the same

problems as TCP, as listed in the above 1-3.

165

3.3 Self-implementation protocol

It can implement a private protocol by itself so that it can implement all the optimizations

proposed in theory. But in that case, the workload will be huge, which can only be done by a

large organization, such as an open source organization like Chromium.

4. Introduction to QUIC

Recently, Google has proposed an experimental protocol QUIC. Based on UDP, it moves

the stream reliability assurance to the application layer [16]. Therefore, it can avoid the

inherent problems of TCP. Meanwhile, its overall framework can be easily reused and

specially optimized in various applications.

1. QUIC is easy to deploy. It is implemented in the user mode; in other words, it is an

application, often known as APP on a wireless terminal. In this way, the part which was

difficult to upgrade and deploy in the past can be quickly deployed in the form of application.

2. QUIC can meet personalized needs in an APP. A typical example is the optimized

application in the weak wireless network that we are going to discuss later. The optimization

in the application is only made for this specific app and does not affect the default behavior of

other apps.

3. QUIC can get rid of many inherent limitations of the TCP protocol settings. Unlike

TCP, which requires that connection must be based on IP address, QUIC can still maintain

connection after the switching between 4G and wifi, which is very important in the weak

wireless environment. At the same time, QUIC can avoid the HOL effect that SPDY

(HTTP2.0) will have in the transport stream multiplexing.

4. Besides, QUIC has the overall framework of HTTP applications, including encryption,

authentication, HTTP header compression and transport stream multiplexing, etc., which is

much more convenient than implementing a UDP-based HTTP protocol by yourself.

5. QUIC add the size of an app. But the size is very small (less than 1Mb).

Below is a comparison of the features of TCP, SPDY (HTTP2.0) and QUIC:

166

Comparison between the Features of TCP, SPDY (HTTP2.0) and QUIC

TCP

SPDY

(HTTP2.0)
QUIC

Self-implementation

protocol

Header compression
General

effect
Good effect Good effect Generally no effect

Supporting transport stream

multiplexing
No Yes Yes Generally yes

HOL effect after transport

stream multiplexing
NULL Yes No NULL

Encryption Yes Yes Yes Generally no

RRT established through

encryption
7 times

Better then

TSL
Minimum NULL

Difficulty in deploying

optimizations
Difficult Easy Easy Easy

Optimization at the application

level
Difficult

Partially

difficult
Easy Easy

Difficulty in implementation Easiest Easy Easy Difficult

Support multiple operating

system
Yes Yes Yes Generally no

Support Ip address changing No No Yes Generally no

From this table, we can see that QUIC is very suitable for carrying http services and easy

to deploy and optimize.

5. Congestion Algorithm in the Wireless Network with a MinGS

As we mentioned earlier in this paper, there are numerous TCP optimizations. Some are

wireless optimizations and some are TCP fast open for TLS. These optimizations can improve

TCP performance in most scenarios, but are rarely used because they are for specific cases and

not suitable for being integrated into the system. The optimization for the weak wireless

network that we propose here is just a typical example [17].

In a wireless environment, sometimes there will be packet loss and high latency [18]. The

default anti-congestion algorithm in the mainstream operating system has no good way to tell

whether it is the lack of router capacity in the intermediate process or the wireless air interface

that causes the problem. In order to avoid congestion in the router, it will slow down in

sending the packets. In addition, due to the high latency and the small initialized congestion

167

window, this algorithm has really poor performance for HTTP with various small resource

needs. There are also many optimized wireless TCP congestion algorithms, and the general

idea is to use different ways to distinguish the reasons for latency and packet loss – wireless

network or router [19] [20]. These methods are very different and can optimize the TCP

performance in a wide range. Nevertheless, the TCP optimizations are still difficult to deploy,

so the general wireless optimization can hardly be applied in reality. What is more, these

algorithms are developed for implementation of TCP in the protocol stack, so they are

intended to solve general problems rather than personalized optimizations for particular

applications, and as a result, they are not the optimal choices for individual cases. Therefore,

neither the general-purpose wireless optimization algorithms nor the personalized

optimization algorithms for particular application scenarios for TCP can be widely applied

easily. QUIC, however, is UDP-based and can be optimized for each application. It can be

customized for each particular application and at the same time easy to deploy. This feature

provides a suitable platform for personalized wireless optimization algorithms and easy

deployment. Thus, we use this platform to achieve optimization at the application level and

put forward QUICMING. Apart from all the advantages of QUIC, QUICMING can also make

special optimizations for VPN and other environments.

In many cases, we know the environment in which the software is running, so we can set

the minimum guaranteed speed (minGS) according to the characteristics of the environment

and optimize the congestion algorithm accordingly. For example, we are in a wireless private

network, a VPN with a guaranteed speed or an LAN. This is very common in many software

and private network application scenarios. In this case, we can use a specific optimization.

These scenarios have one thing in common – no router congestion occurs at a certain

network speed; in other words, all packet losses and latencies are caused by the wireless

network. Therefore, We can use this feature to optimize. Keep the trffic constant. We can

make optimizations in two aspects – initialized sending speed and congestion algorithm. Here

we introduce several concepts:

168

MinGS: depending on the wireless environment, which can be determined by

configuration or other ways, like hardware information retrieval.

Minimum guaranteed interval (minGT): depending on the minGS and the network MTU.

 (1)

Wireless congestion mode: under this mode, wireless network is congested and all data

are sent at the minGT. Data are sent at a consistent interval rather than continuously to avoid

the packet loss of the router caused by unstable sending interval. If an ACK indication of no

packet loss is received for consecutive N times, this mode can be switched to the high speed

mode. N is a customizable constant. N usually is 10.

High speed mode: under this mode, there is no congestion in the wireless network, and

the linux’s default CUBIC (WTCP is also good) congestion algorithm is used to control the

traffic. In this mode, the network speed will be monitored at real time. If the speed is less than

minGS, it will be switched to the wireless congestion mode.

5.1 Optimization of the initialized sending speed

As the minGS has been set, we can send data directly at the minGS; in other words, the

initial mode is the wireless congestion mode, which can significantly improve HTTP

performance in a high-latency network.

5.2 Optimization of the congestion algorithm

As there is a minGS, if the speed in the high-speed mode is less than the minGS, it means

that at this time both the packet loss and the latency are caused by the wireless network. In this

case, it does not have to reduce the speed, but to switch to the wireless congestion mode. The

congestion window (cwnd) is not tuned by the CUBIC algorithm in the wireless congestion

mode, but instead it is the packet decision actually sent in the wireless congestion mode. The

congestion window is not subject to the adjustment by the CUBIC algorithm under the

wireless congestion mode; on the contrary, it depends on the number of packets actually sent

under this mode. Under the wireless congestion mode, data are sent at the minGT, but the total

169

amount cannot exceed the receive window on the other side; once the amount reaches the

receive window, it will stop sending. In the wireless congestion mode, once there is an ACK

indication of packet loss, the packet will be retransmitted again, but still at the minGT. This is

because in the wireless congestion mode, all packet losses result from the wireless network

and have nothing to do with the router. If the correct ACK indication is received for N times,

it will switch to the high-speed mode. When it switches to this high-speed mode, the initial

cwnd will be the cwnd in the wireless congestion mode (the number of packets sent but not

confirmed) and CUBIC is going to enter the probing state, that is, ready to accelerate the

speed.

The whole optimization process is summarized below:

Table 1. QUICMING Optimization Process

 QUICMING optimization process

1 The client reads the information and calculates the minGT and minGS

2 It enters the wireless congestion mode

3 WHILE TRUE THEN

4 IF currently it is in the wireless congestion mode

5
 Packets are sent at the minGT and the cwnd depends on the number of packets

actually sent.

6
 Upon receiving the ACK indication of packet loss, it resends the packet

without having to reduce the speed.

7 After receiving N correct ACK indications, it switches to the high-speed mode.

8 ELSE

9
 The initial cwnd is the number of packets actually sent in the wireless

congestion mode.

10 CUBIC is about to enter the probing state

11
 It monitors the real-time network speed. If the speed is less than the minGS, it

will switch to the wireless congestion mode.

12 END IF

13 END WHILE

This optimization process is simple and effective, and can be easily implemented under

the QUIC framework. It is consistent with the simplicity and effectiveness requirements for

the congestion algorithm.

6. Test Environment

170

In order to verify the effectiveness of QUICMINg, we perform a simulation test. The test

environment is summarized as follows:

Table 2. Test environment table

 Test environment

Test web resources 100 requests, sent to 3 hosts, with a total download size of 1311KB

Network simulation

method
Network emulator

Latency 0-3000ms

Packet loss 0-20%

Encryption Encrypted (CA certificate-based encryption)

MinGS 1mb

We compare the general TCP, SPDY, general QUIC and QUICMING. We choose them

because they are very representative. TCP is supported by all browsers; SPDY is supported by

most advanced browsers, and as it is similar to HTTP2, we do not include HTTP2 in the test;

general QUIC is included in the test to verify its own performance; QUICMING is used to

verify our new algorithm.

In order to simulate a wireless environment, we use a network emulator. The network

diagram is shown below:

network emulator

QUIC serverMobile client Web server

Fig.1. Network Testing Diagram

The mobile client uses QUICMING. Through the network emulator, the QUIC server

sends data to the web server. The downlink process is the other way around. The QUIC server

is powerful. It has powerful performance. Concurrency of QUIC server is better than most of

TCP server (Apache Server).

171

7. Simulation Test Results

In the test, we choose different latencies and packet loss rates, and compare the time

different protocols spend in loading the services (unit: s). After the simulation test, the results

are as follows:

Table 3. Table for Simulation Test Results

 Wireless simulation environment (Latency ms/ packet loss rate %)

 0/0 0/5 0/10 200/0 200/5 200/10 500/0 500/5 500/10 1000/0 1000/5 1000/10

General TCP 12 12 20 19 25 32 29 49 63 51 73 135

SPDY 10 10 21 17 22 29 24 41 58 43 59 112

General QUIC 9 9 11 11 11 12 14 18 18 19 29 30

QUICMING 7 7 9 9 9 10 11 13 14 14 25 25

The packet loss rate is the packet loss rate of uplink and downlink. From this table, we

can clearly see that when QUICMING is used, the web page loading speed is significantly

greater than those of the others. From the results we can see that when the latency and packet

loss rate are low, there is not much difference between the protocols, but when the latency and

packet loss rate are increased, the differences are enlarged, which fully prove the outstanding

performance of QUICMING in the weak wireless network environment. QUICMING has all

the advantages of QUIC. The special optimizations of QUICMING work, when packet loss is

increased in wireless network.

8. Conclusions

QUIC is not subject to any restriction of TCP in implementation, and that is why QUIC

excels TCP and TCP-based SPDY in the overall performance. As the congestion algorithm of

QUIC can be implemented without the TCP system, its optimization can also be easily

implemented, and even in the application level, the optimization can still be quickly deployed.

This feature makes it very suitable for the application-level optimization, therefore, we

propose QUICMING. At last, we prove the actual effects of QUICMING through test. One of

the core advantages of QUIC is that it provides us with an upper frame for optimization in the

application level. This gives us more inspiration than the conclusions of QUIC itself because

172

we can make optimizations and modifications for various special scenarios without affecting

other applications and can quickly deploy them in our actual practice.

References

1. M.C. Chan, R. Ramjee, TCP/IP performance over 3G wireless links with rate and delay

variation, 2005, Wireless Networks, Vol. 11, No. 1, pp.81-97.

2. Dalal, Purvang, Link Layer Correction Techniques and Impact on TCP’s Performance in

IEEE 802.11 Wireless Networks, 2014, Communications and Network.

3. M. Ivan, V. Ramos, Choosing a TCP version over static ad hoc wireless networks: wired

TCP or wireless TCP?, 2013, In Next Generation Mobile Apps, Services and Technologies

(NGMAST), Seventh International Conference on, pp 170-174.

4. A.V. Reddy, D. Kavitha, N. Kasiviswanath, TCP over On-Board IP Networks with High

Bit Error Rate and Frequent Link Outages, 2016, In Advanced Computing (IACC), 2016

IEEE 6th International Conference on, pp 506-511.

5. A. Cardaci, L. Caviglione, F. Erina, Using SPDY to improve Web 2.0 over satellite links,

2016, International Journal of Satellite Communications and Networking.

6. H.J. Kim, G.S. Yi, S.W. Lee, A Research on the Performance Analysis of SPDY Protocol

in Mobile Networks, 2014, Lecture Notes in Electrical Engineering, Vol. 19, No. 1,

pp.199-206.

7. N. Arianpoo, V.C.M. Leung, A Smart Fairness Mechanism for Concurrent Multipath

Transfer in SCTP over Wireless Multi-hop Networks, 2016, Ad Hoc Networks.

8. C. Luca, A. Gotta, A. Abdel Salam, Michele Luglio, Performance Evaluation of HTTP and

SPDY Over a DVB-RCS Satellite Link with Different BoD Schemes, 2014, In Personal

Satellite Services. Next-Generation Satellite Networking and Communication Systems: 6th

International Conference, pp 34-44.

9. S. Korakit, K. Piromsopa, When should we use HTTP2 multiplexed stream?, 2016,

Computer Science and Software Engineering (JCSSE), 2016 13th International Joint

Conference on

173

10. R. Aissaoui, O. Erdene-Ochir, A. Sabah, QUTor: QUIC-based Transport Architecture for

Anonymous Communication Overlay Networks, 2016, In Qatar Foundation Annual

Research Conference Proceedings

11. google, https://www.chromium.org/quic, access date 2017

12. google, https://www.chromium.org/spdy, access date 2017

13. D. Kumar, S. Aishwarya, A. Srinivasan, Adaptive Video Streaming Over HTTP Using

Stochastic Bitrate Prediction in 4G Wireless Networks, 2016, ITU Kaleidoscope: ICTs for

a Sustainable World (ITU WT), pp 1-8.

14. X.S. Wang, A. Balasubramanian, A. Krishnamurthy, How speedy is SPDY?, 2014, Usenix

Conference on Networked Systems Design and Implementation, USENIX Association.

15. M. Varvello, K. Schomp, D. Naylor, Is the Web HTTP/2 Yet?, 2016, Passive and Active

Measurement, Springer International Publishing.

16. H. Bakri, C. Allison, A. Miller, HTTP/2 and QUIC for virtual worlds and the 3D web?,

2015, Procedia Computer Science, Vol. 56, No. 1, pp. 242-251.

17. D.F. Wei, The Design Method of Embedded Web Based on Model-View-Controller

Pattern, 2016, Review of Computer Engineering Studies, Vol. 3, No. 2, pp. 43-46

18. X.H. Ren, Q. Liu, Y.M. Zhang, The proportion of energy consumption structure prediction

based on markov chain, 2015, Mathematical Modelling of Engineering Problems, Vol. 2,

No. 1, pp. 1-4.

19. P. Sinha, T. Nandagopal, N. Venkitaraman, WTCP: a reliable transport protocol for

wireless wide-area networks, 2002, Wireless Networks, Vol. 8, No. 2, pp. 301-316.

20. C. Casetti, M. Gerla, S. Mascolo, TCP Westwood: End-to-End Congestion Control for

Wired/Wireless Networks 2002, Wireless Networks, Vol. 8, No. 5, pp. 467-479.

