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Abstract

For the time fractional sub-diffusion equation with variable coefficients, a quintic spline
method is presented, along the time direction, the recursion formula obtained from the Lagrange
interpolation functions is used, along the space direction, the quintic spline interpolation
functions, which have high order accuracy when being used to approximate smooth functions and
their 1,2,3 order derivatives, are used as the basis functions. Theoretical analyses and numerical

examples show that 4 order accuracy in space can be achieved for this scheme.
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1. Introduction

When studying diffusion phenomena in highly inhomogeneous media, ones often find that
traditional integer-order diffusion models always lead to heavy tail phenomena. By comparison,
corresponding fractional models behave better when describing probability density. Therefore, in
recent years, the fractional diffusion equation with various boundary conditions and nonlinear
terms has become more and more important in many fields, such as biology, medicine, fluid
mechanics, thermodynamics and electrochemical reaction. More and More researchers are

focusing on the numerical solution and simulation of fractional models subject to various
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conditions. And many excellent research achievements have been presented, such as the finite
difference method, the finite element method, the spectral method, the finite volume method and
so on. However, in these existing literatures we can find most of the numerical methods are
efficient only for fractional equations with constant coefficients. Therefore, the numerical
solution of various fractional diffusion equations with variable coefficients remains an important

area to be studied.

In this paper, using the quintic spline interpolation functions, which have high order
accuracy when being used to approximate smooth functions and their derivatives, we study the

numerical solution of the following fractional diffusion equations with variable coefficients
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where0< #<1, k(x,t)>0are diffusion coefficient function, ¢(x),(t),(t), f (x,t) are given

smooth functions. .DJ\u is the Caputo derivative of the form
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With T'() the Gamma function. For Equ.(1), we use the quintic spline interpolation
functions as basis function in space, present a collocation method combining with the L1

recursion formula in time, analyze the theoretical accuracy, and illustrate the efficiency by some
numerical examples.
2. Preparation

Define respectively p, ={x}" and p, ={t}" as uniform partitions of the interval [a,b] and

[0,T] with

b_a,tj = jz',j=0,1,---,Nt,z'=l.
N, N

t

X, =a+ih,i=0,1---,N,,h=

Let S;[a,b]={v:v eC“[O,l],vl(Si e P,,0<i<N, -1} be the space of quintic spline functions,
where P, is the set of polynomials of degree <5, and 5, =[x, X ,,].
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For convenience of using quintic spline function as basis function in space, several auxiliary

nodes x. =a+ih(i=-5,---,-1, N, _,,---, N, +5) are added to the meshes, which leads to a new

interval | =[a—5h,b+5h].

By the results in, we can immediately obtain the expression of quintic spline function and

some characteristics as follows:

Fori=-2,-1---,N, +L N, +2, the quintic spline functions are defined as

(Xx=% +3n)°, Xe[X_sX_,1;

(x=x +3h)° —6(x—x, +2h)°, x e [X _,, X ,I;

B ()= 1 J(x=x +3h)° —6(x—x +2h)° +15(x—x. +h)°,  xe[x_,Xx]; @)
' 120h* | (=x+ X +3h)° —6(=X+ X, +2h)® +15(—x + X, + h)®, x e [X,, X. ,];

(=X + % +3h)° = 6(=X+ X, +2h)°, X € [X;,1, X, ];

(—x+% +3h)°, x € [X,,, X.5].

And for enough smooth function u(x) there is unique quintic spline function

Ny +2

u,(x) = Z u;B.(x) satisfying the following interpolation result.
i=—2

Lemma 1 Supposeu(x) e C*[a,b],and u,(x) € S, is the quintic spline function defined above
satisfying

U (%) =u(x),i=01L---, Ny, u;,'(%) =u'(x),us "(x) =u"(x),i =0, N,
(4)

then, for all nodes x,,i=0,1,---,N,, it holds

u(x) =u,(x)= %(ui_2 +26u,, +66u; +26uU; , +U;,,),

() =U, () + O(h) = 2= (U, ~10u,, +100,, +u,.,) +O(h’),

u"(x)=u,"(x)+0(h*) = 6_:12(ui2 +2u,_,—6u, +2u,, +u_,)+0(h"),

i+l i

()

u®(x)=u®(x)+0(h*) = % (-u_,+2u_, —2u

+u.,)+0(h*).

i+1

In order to deal with the Caputo derivative operator (2), denote by
a =I""-(1-1)"",1=12,---,N+1 and let

P _ _ -8 -p
_ a'nz- _ (an—k+1 a‘n—k+2)T (k — 2,_ ., n) C _ alr (6)

Cl = ’Ck = Y ¥n+l T ’
I'(2-p) I'(2-p) I'(2-p)
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Then, the use of piece-wise linear Lagrange interpolation function will result in the
following recursion formula :

Lemma 2 When u e C?[0,T], for the Caputo derivative operator (2), there is a recursion
formula of the form

n+l

c D(ftu(t) |t:tn+l: chu(tk) + R(u(tnu))’ n=1.-- N, (7)

here the remainder term R(u(t,,,)) satisfies
|R(U(t,,.) IO(*7). (8)

3. Quintic spline collocation method

k
For convenience, let Dfu = Z—lkj For the n+1th level (0<n<N,), substituting (7) into the
X

first equation of (1), there is

n

C 1 f(X,t )
Dau(x,t )——t _u(x,t Y=——> c.u(t.,x)———"2 L R(u(t...)).
X ( n+l) k(X,tn+1) ( n+1) k(X,th)J’Z_l: j (] ) k(X,thrl) ( (n+l))

. f(xt,..) _
c,u(t;,x) ————"12  dropping the error term R(u(t,,)), we
k(X’tn+l) ; : ( : ) k(X’tn+1) pp g ( ( n+1))

Denote byr(x) =

obtain

C
DIt ty) (5 Uk ) =r (0 ©

In (9), the first level u(x,t,) can be obtained by calculating the initial condition

u(x,0) =g(x) in (1).

Let u,(x,t,,,) be the obtained approximation solution. First, substituting all nodes

Xos X150+, Xy INt0 (9), and considering (5) we can get:

U, +2u, —6u +2u,, +U;,,  Cy U, +26U,, +66u +26u
6h? K(x,t..) 120

+ ui+2

i+1

=r(x)+0(h*) (10)

Second, by the two boundary conditions in (1), the use of first two equations of (5) leads to
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ﬁl(—u2—10u1+10u1+u2)+aéh (U, +26U., + 66U, + 26U, +U,) = 24p(t_)h,
(11)

a,h
IBZ(_uNh—Z_10uNh—1+10uNh+l N+2) 5 (N 2+26UN 1+66U +26uN at Nh+2):24V/(tn+1)h-

For obtaining enough linear equations, we take derivative with respect to x in (9) and have

Du(x,t,.,)— (k( ’”ﬁﬂ)) u(x, ”“)_k( ’”:ﬂ) Du(xt,.)=r'(x). (12)

Taking x=a,x =b, and dropping the error termO(h*) , (12) reads:

—U_, + 2u_13—2u1 +U, +a, u_, +26u_, +66u, +26u, +u, B, —U,—10u_, +10u, +u, _ (@)
2h 120 24h
—Uy ,+2Uy ,—2Uy ., +Uy ,, Uy, , +26u, ,+66u, +26u, ., +Uy .,
h h 3 h h +aa h h h h h (13)
2h 120
-u, ,—10u, , +10u ., +u .,
+ h h h h - r' b ,
2 o )
where a. =—C B.= _n+1, ) , _M
a n+l(k( 1tn+l)) |x a ﬂa k( ,tml) &y = +1(k( ,tn+1)) |x b ﬁb k(b,tml)
By (10)-(13), we can obtain the collocation equations
(A+ih2QB)u =R (14)
20

Here A,Q, B are all (N,, +5) x (N, +5) -dimensional matrices:

0
6, 6, 6, 6, 6, ) 1
12 0 -2 1 Coy
1 2 -6 21 K%t
A=| T e T Q= ,
1 2 -6 21 Cot
-1 2 0-21 _k(XNh,tm)
L Pr P2 Ps Ps Ps | 1
0
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0 0 0 0 O

h M, 13 Ty s
1 26 66 26 1

1 26 66 26 1
h b b Ak
0 0 0 0 O

with

0, = ﬂ1+1a1ht9— =104, + 26a1h9—6—56a1h6? =104, + 6a1h9 ﬁ1+1a1

1 26 66 26 1
p==p5 +ga2h,p2 =-104, +€azh,p3 =Eazh’p4 =104, +?a2h,p5 =5 +gazh’

_a,h-5B8,  26a,h-50p,

260,h+508, a,h+54,
= 3 i1 = 3 =

3 =Ty

15 =220, =

o ,h=54 A= 260,

260, + 504, a,h+54,
3 % = '

h—-504,
A =22a,.h, A4, = A =
//13 b 4 3 3

A= 3

In addition, the right term R and unknown U are respectively

R =[24¢(t ),2|’'(a),GI‘(XO)hZ,---,6r(XNh)h2,2r'(b),241//(tn+1)]T , U :[u_z,u_l,---,uNhH,uNM]T.

n+1

For the collocation system (14), we have

Theorem 1 Suppose model (1) has unique solution, when u(x,t) € C 2([a,b]x[0,T]), the
approximation solution in (14) satisfies the errors:

lu(x,t) —u,(x,t) ||,.=0(h* +z*7). (15)

PROOF When system (1) has unique solution, there is Green function G(x,s) at every time
level. In Level n+1(n=0,---,N,-1), for the exact solution u(x,t,,,) and approximation

solution u,(xt,.,) » denote by DZu(x,t ,)=£&(x), Du,(xt,,,)=a(X), then there is

Du(x,t )= Img(s)dw 0 (6t )= jamG(X :S) 4(s)ds, m=0,1.

For convenience, let F(x,u) =hu(x,tn+1
! n+1

Dy, :Ss[a,b] > R™™, Dy (9(x)) =(9(%) 9(%)-+- (%, )’

)+r(x), defining the following operator :

My, :R™" S [a,b], K:C[a,b]—>Cl[a,b], K(g(x))= F(x,J':G(x, s)g(s)ds) .
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Based on the above denotations, (9) can be written as
Diu—F(x,u) =&(x) ~ K(&(x)) = (I = K)(&(x)) =0, (16)

(1) has unique solution, so operator | —K is reversible. And the reversible is a bounded operator.
Based on Lemma 1, it has truncation error O(h*) in the process of (10)-(14), hence, there is
(I =K)(@(x)) =O(h*). (17)
Based on(16) and (17), we obtain
(1 =K)E(x) - a(x)) =0O(h"),
Again based on the bounded reversibility of Operator | — K , there is
1 £()~@(X)[l,=O(h*) »

Therefore, we get the equality

[[u(x,t.0) =Us (% 6,0 [ =l I:G(X, S)(E(x) —(x))ds|I=O(h*).

By combining with the Lemma 2, we complete the proof of the theorem 1.

4. Numerical examples

In order to investigate the theoretical analysis results about the efficiency of the presented
quintic spline collocation method, in this section, by using the Matlab R2010, some numerical
examples are provided. In all given results, Table 1 lists the corresponding precision with every

space step and fixed time step. We take the fractional order as g =0.01 to minimize the impacts

from the time direction. Table 2 and Table 3 list the corresponding precision with every time step

and fixed space step. Here we take the fractional order £ =0.01,0.5,0.99t0 check the impact of
the fractional order on the precision. In all tables, the errors are calculated in terms of infinite

norm, we use E_ to represents the errors at all collocation nodes. Here the computational formula

of the convergence rate is:

Rate =log(E,(N/2)/E,(N))/log(2) .
Example 1.u(x,t) =t*(cosx+€*),k(x,t)=e*", T =1L,a=0,b=1, and
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I'(4)
I'(4-p)

X+t

t*/ (cos x +e*) —t*(e* —cos x)e ™.

f(xt)=

Example 2. u(x,t) =t>'x*! k(x,t) =cos(x+t),T =L,a=-1Lb=0, and

I's.1
f(x,t)= #t“’ﬁx“'1 —12.72t**x** cos(x +1) .
'@E.1-p5)
Table 1. Errors (z =1/10000, # =0.01) along the space direction
M Example 1 Example 2
E. Rate  CPUtime (second)  E, Rate  CPUtime (second)
8 5.1240e-7 2.1345 1.5812e-6 2.1109
16 3.2854e-8 3.9631 42521 1.0216e-7  3.9521 4.2385
32 2.1225e-9 3.9522 8.5219 6.5361e-9  3.9663 8.4326
64 1.3670e-10 3.9567 16.9823 4.2886e-10 3.9299 16.9327
Table 2. Errors (N=1/64Y along the time direction in EXAMPLE 1
N £=0.01 £=0.5 £=0.99
E. Rate E. Rate E Rate
200 2.1335e-5 2.5355e-4 5.7342e-3
400 5.5157e-6  1.9516 9.0358e-5 1.4885 2.9032e-3 0.9819
800 1.4257e-6 1.9519 3.2181e-5 1.4894 1.4672e-3 0.9846
1600 3.6638e-7 1.9603 1.1450e-5 1.4909 7.4035e-4 0.9868
3200 9.4166e-8 1.9601 4.0721e-6 1.4915 3.7235e-4 0.9915
Table 3. Errors (h=1/64) along the time direction in EXAMPLE 2
N £=0.01 £=05 £ =0.99
E. Rate E. Rate E. Rate
200 5.6360e-5 2.8413e-4 6.2834e-3
400 1.4693e-5 1.9395 1.0215e-4 1.4789 3.2201e-3 0.9644
800 3.7891e-6 1.9552 3.6449e-5  1.4867 1.6373e-3 0.9758
1600 9.7496e-7 1.9584 1.2993e-5 1.4881 8.2921e-4 0.9815
3200 2.5061e-7 1.9599 4.6292e-6  1.4889 4.1897e-4 0.9849

The experimental results from Table 1, Table 2 and Table 3 show that, when solution

function u(x,t) e C;‘f([a, b]x[0,T]), quintic spline collocation scheme (14) achieves accuracy of

O(h*) and O(z*”) along the time and space direction respectively. These numerical results are

in agreement with the theoretical results of Theorem 1.

5. Conclusion
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By combing with the L1 recursion formula in time and quintic spline functions in space, we

have introduced a collocation method for the the fractional sub-diffusion equation with variable

coefficients. Theoretical analysis and numerical experiments show this method can achieve the

precision O(h* +7>*) under certain smooth conditions with the theoretical analysis.
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