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Abstract

This paper considers the existence of the generalized solution to the Cauchy problem for a
class of generalized Zakharov equation in two dimensions. By a priori integral estimates and
Galerkin method, the author establish the existence of the global generalized solution to the

problem.
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1. Introduction

Many authors studied the Zakharov system [1-5, 8-12]. In [1], B. Guo, J. Zhang and X. Pu
established globally in time existence and uniqueness of smooth solution for a generalized
Zakharov equation in two dimensional case for small initial data, and proved global existence of
smooth solution in one spatial dimension without any small assumption for initial data. [2]
proved low-regularity global well-posedness for the 1d Zakharov system. The asymptotic
behavior of Zakharov equations driven by random force is studied [3]. S. You studied a
generalized Zakharov equation and obtained the existence and uniqueness of the global solutions
to initial value problem [4]. Biswas and Song address the Zakharov-Kuznetsov-Benjamin-Bona-
Mahoney equation with power law nonlinearity [8]. By applying the extended direct algebraic
method, Seadawy founds the electric field potential, electric field and magnetic field in the form

of traveling wave solutions for the two-dimensional ZK equation [9]. Adem and Muatjetjeja
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compute conservation laws for the 2D Zakharov-Kuznetsov equation using Noether’s approach
through an interesting method of increasing the order of the 2D Zakharov-Kuznetsov equation
[11]. Doronin and Larkin consider initial-boundary-value problems for the linear Zakharov-
Kuznetsov equation posed on bounded rectangles [12]. Special interest was recently devoted to
quantum corrections to the Zakharov equations for Langmuir waves in a plasma [13]

iE, —aVx(VxE)+V(V-E)=nE+TVA(V-E),

n,—An=A|E| -TA’n.
the parameter « defined as the square ratio of the light speed and the electron Fermi velocity is
usually large. In contrast, the coefficient I that measures the influence of quantum effects is
usually very small [14].

In this paper, we are interested in studying the following generalized modified Zakharov

system in two dimensions

iE, —aV x(VxE)+V(V-E)=nE+TVAV-E)+ f(| E)E, (1)
n,—An=A|E'-TA’n. (2)

with initial data
E(x,0)=E,(x), n(x,0)=n,(x), n(x,0)=n/(x). 3)

where E = (E,, E,), x=(x,,x,)ell’.
Now we state the main results of the paper.
Theorem 1. Suppose that
() E,(x)e H*(0?%), ny(x)e H'(O?), n(x)e H'(O?).
(i) f(&)eCc), | f(E)EKME". Where M >0, 0<y <1.
Then there exists global generalized solution of the initial problem (1)-(3).
EC,ye "0 HYNW™ (05 H™?),
n(x,0)e L0 HYNW (O HY,
n(,t)el” O H YW O HY).
To study generalized solution of the system(1)-(3), we transform it into the following form

(notice that V(V-E)=AE+V x(VxE))

iE, —(a —1)Vx(VXE)+AE =nE+TVA(V-E)+ f(|E|)E, (4)
n+V-p=0, (5)
@, =-V(n+|E|")+TVAn. (6)

with initial data
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E(x,0) = Ey(x), n(x,0)=mn,(x), ¢(x,0)=¢,(x). (7
where @, satisfying—V-¢, =n,.
For the sake of convenience of the following contexts, we set some notations. For 1< g <o,

we denote L/(0]“) the space of all gth power integrable functions in [1¢ equipped with norm

1] and H"”(0?) the Sobolev space with norm [/l If p=2, we write H(0 )

o oy

instead of H**(0“). Let(f,g)= Imn f(x)-g(x)dx, where g(x) denotes the complex conjugate

function of g(x). And we use C to represent various constants that can depend on initial data.

The paper is organized as follows. In Section 2, we establish a priori estimations. In Section 3, we

state the existence of global generalized solution.

2. A priori estimations

For the solution of system (4)-(7), we have

2
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2
IR

|E(x,1)

= ”Eo

The conservation is obtained by taking the imaginary part of the inner product of (4) and E.
Lemma 1. Suppose that E,(x)e H*(0?), n,(x)e H'(U?), ¢,(x)e L’(1*) . Then for the
solution of problem (4)-(7) we have
M (¢) =M (0).
Where

20
p+2

p+2

e

Lp+2 .

1 1
M @) =|Velj, + [ .nlef de+— Vol + |l -

Proof. Taking the inner product of (4) and E, . Since

Re(—(a —1)VX(VXE), E)=—(a—1)Re(VxE,VXE,)

:_a__li"vXE 2 ,
2 dt ¢
1d 2
Re(AE, E)=-Re(VE,VE,) =—EE||VE o

Re(nkE, E,):%J-n|E|t2 dx=%%In|E|2 dx—%jnt |E dx,

Re(IVA(V-E). E,) =T Re(V(V-E).V(V-E)) = £ V(V-B)f.
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Re(£QEPEE) = [FUER) B ax=5 [ r@acax.

We get

d
VEL + =)V E + [l EF dx |

(8)
d 2 |EF
+E[F||V(V.E) L+ j jo f(g)dgdx} = j n, |E dx.
From (5) and (6), we obtain
Int |E dx:—jv-<p|E|2 dx:j<p-V|E|2 dx
= I(p-(FVAn—Vn—@)dx
1d, p
= J.V -o(-T'An+n)dx —EE”@”LZ )]
1d
= J.nt (C'An—n)dx —55”(0”2
1d 2 2 2
- LTy s + ol ).

Combining inequality (8) with (9) we obtain

d
E[”w”; +(@-D|VxE[ +[n|EP dx+r||V(v.E)||;}
;}zo

Lemma 2 (Gagliardo-Nirenberg inequality [6]). Assume that ue L'(U"), D"ueL'(I"),

dfpe r
+5[Hol | S (§)deds+|Vn

|l o
A )

Thus we get Lemma 1.

1<q,r <0,0< j<m,we have the estimations

a 1-a

J <
HD u C|\D"u @

m
raomy H

o
o

where C is a positive constant, 0 < S <qx< 1,
m

Lemma 3. Suppose that
(i) E,(x)e H* (@), ny(x) e H'(D?), ¢,(x) e L'(U7).
(i) f(&)ecC), | f(E)EME". Where M >0, 0<y <1.

Then we have

IVE[L, +|VxE

LZ

s +|V(v-E)

iz +|Vn iz <C.

2 2
2+l +e

Proof. By Holder inequality, Young inequality and Lemma 2 we have
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1

L. 1 3
JnIEF ax <[l [E], < Cvnl, nl [VEL 2]

r : 2
<

<7 [Vl +C|nl [VE]

< %”w " +C|VE

b 2
L 4 L
r 1 1
< T [9nll + 3+ VEL .
And noticing that f(£)e C), | f(E)|IKMET, we get

v”f‘z f(ﬁ)dﬁngjjoEzngdé:dx:%IIEF(M) dx

Using Gagliardo-Nirenberg inequality and noticing that 0 <y <1, we write

» =

M . 1
o des vl e, < Ve +C
Note that from Lemma 2 and eq. (10)-(12), one has
1
SIVEL: +(@=D|[Vx £l +T[V(V- )
r 1 1
+ LIl Sl + Lol <M ) +c.

Since o is larger than 1, we thus get Lemma 3.

Lemma 4. Suppose that
() E,(x)e H*(?%), ny(x)e H'(0?), @,(x)eL*(07).
(i) f(&)eCU), | f(&)|KME". Where M >0, 0<y <1.
Then we have

|E, <C.

H? —

oo il + e

Proof. Taking the inner product of eq. (4) and V', (5) and v, (6) and @, it follows that
(iE,—(a—1)VX(VXE)+AE,V) = (nE+FVA(V-E)+f(| EP)E, V).

(nt +V.p, v) =0,
(¢, @)=(-V(n+|EP)+TVAn, @).

where ¥V v,v, e H} (i=1,2), V=(,v,), ®=(,v,).

By Hoélder inequality, it follows from eq. (13) that
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(E.V) < ‘((a —I)Vx(VxE),V)‘ +(AE V)| +[(nE, V)

+‘(FV|:A(V-E):|,V‘ ‘f(|E|2)E V)‘

=(@-D| )
+F‘(V(V-E),V(V- \ ‘f(|E| VEV )|
+T|V(V-E). [V(V-¥), Z;jm |V||L2.

By Gagliardo-Nirenberg inequality, we know that
|El,, < CIvER |l

<l VEIPIIEll, <C,

1227+ 2=

LZ_

1

2SC

LZ

&1

Hence from (16) we get

(&,
Using Holder inequality, from eq. (14), there is
() =[(V @)= [0 V)| <l [V, < C [

From eq. (15) and Holder inequality, we have

(¢, @) = \(Vn,cD)M(v |E |2,CD)‘+‘(FVAn,CD)‘

<[val;[@]; +(1 £F, V-@)+T|(vn a0)

Hence from (17)-(19), one obtain Lemma 4.
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3. The existence of generalized solution

In this section, we formulate the proof of Theorem 1. First we give the definition of

generalized solution for problem (4)-(7).
Definition L. The functions E(x,ye L*(0 " ;HYNW™ (0 " H),
n(x,tye L*(0;HYNW™> (O H™, o(x,)e L0 )Y AW™(";H?), are called

generalized solution of problem (4)-(7), if for any they satisfy the integral equality

(iE,.,v)+(a=1) Y (aEV ,aa—vj—(a—l) > (aE’” ,;—VJ—(VEm,Vv)
X

vEm axm y vEm axv X,
ve{l,2} ve{l,2}
:(nEm,v)JrF(V(V-E),V(aa—vDJr(fﬂE|2)Em,v), m=1,2,
(n,+V-0,v)=0,
2
(%’v):[_a(nHEl )+F8(An)’vj’ ieln
ox, ox,

with initial data
E |t:0: Eo (x)a n |;:0: n (x)7 o |t:0: 2 (x):
Next, we give two lemmas recalled in [7].

Lemma 5. Let B, B, B, be three reflexive Banach spaces and assume that the embedding

B, — B is compact. Let
’ . o, )
W= VGLO((O,T),BO),EEL1((O,T),B1) > T<OO,1<p0,pl<OO.

W is a Banach space with norm

71, =171

mors ||V, (O0r8)
Then the embedding W — L ((0,T); B) is compact.
Lemma 6. Let QQ be an opensetof 1" and let g, g, e L"(l"), 1< p <o, such that

<C.

L/ (Q)

g, —g aeinQ and g,

Then g, - g weakly in L (Q).

Now, one can estimate the following theorem.

Theorem 2. Suppose that
() E,(x)e H*(0?%), ny(x)e H'(0?), @,(x)eL*(07).
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(i) f(&)eC), | f(E)KME". Where M >0, 0<y <1.
Then there exists global generalized solution of the initial value problem (4)-(7).
E(x,t)e L*(0 5 HYNW (01, H?),
n(x,)e L0 HYNW™ O H,
o(x,t)e L”(0 " I AW " H).
Proof. By using Galerkin method, choose the basic periodic functions {®,(x)} as follows:
—Aw;(x)=2,0,(x), ©,(x)e Hy(Q), j=1,2,-,1
The approximate solution of problem (4)-(7) can be written as
E'(x,0) = ilaj o, (x), ¢'(x,0)= ilﬁj-(t)coj (x), n'(x,0)= ilyj- (Do, (x),
= = =
where
E'=(E, E), a)(t)=(a}(t),a}, ),
o' =(ol.0)). B,(©)=(B,(®). B, ).
and € is a 2-dimensional <cube with 2D in each direction, that is,
Q={x=(x,x,)||x |<2D,i=1,2}. According to Galerkin’s method, these undetermined

coefficients oc; (1), ,le.(t) and }/_i.(t) need to satisfy the following initial value problem of the

system of ordinary differential equations

: OE. ow, OE, ow,
(ZE’I””G)K)-i_(a_l) Z (ax ’ Ox j_(a_l) Z (ax ’ Pl j_(vErln’va)K)

v£EmM m v v#m v xv

vell,2} ve{l,2} (20)
:(nE,;,wK)+r(v(v-15’),v[2i’x D+(f(| E'P)E,. @), m=12,

m

(n/+V-¢'.0,)=0, k=121, (21)
i 12 ol AR’
((pit,a)’(): _a(”l +|E | )+1—~ ( )’w’( , 121,2’ (22)
ox, ox,
with initial data
El ‘t:Oz Eé(X), nl |t:0: n(l)(x)’ q)l |t:0: (Pé(x) (23)

Suppose

E\(x)—T>E (x), n\(x)—Lon,(x), @.(x)—LE@,(x), [—> .
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Similarly to the proof of Lemma 1-4, for the solution E'(x,t), n'(x,t), ¢'(x,t) of problem (20)-

(23), we can establish the following estimations

2 |, +[¥ (v £)

where the constant C is independent of / and D . By compact argument, some subsequence of

L+ <c (24)

2
H

2 /
2 +H(P

!

n,

E! <C. (25)

o

H™? +

H™ + H!

(El, n', ¢ ), also labeled by /, has a weak limit (£, n, ¢) . More precisely
E'5E in L*(0*;H") weakly star, (26)
n'—>n in L0 H") weakly star, (27)
o > in L[°(0";I*) weakly star.
Eq. (25) imply that
E' - E in L°(0",H7”) weakly star, (28)
n—n in L°(0°,H") weakly star,
o > in L°(07,H?) weakly star.
Moreover, let us note that the following maps are continuous.
H'OH->L'0O%), uu,
H'O)HxH' O > L0, (u,v)— uv.
It then follows from eq. (26) and (27) that
[E'[ >w in [*(0*,[%) weakly star, (29)
nE' >z in L*(07,L') weakly star. (30)
First, we prove w= |E |2 . Let Q be any bounded subdomain of [J *. We notice that
the embedding H'(Q) — L*(Q) is compact,
and for any Banach space X,
the embedding L” (0 *, X) — L*(0,T; X) is continuous.
Hence, according to eq. (26), (28) and Lemma 5, applied to B, = H'(Q), B=L'(Q), B, = H *(Q),
and says that some subsequence of E’ |, (also labeled by /) converges strongly to E|, in
L*(0,T; L' (). So we can assume that

E' - E stronglyin L’(0,T;L; (Q)), (D
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and thus
E' 5 E aein [0,T]xQ.
Then, using Lemma 6 and eq. (29) imply that w= |E |2 .

Second, we prove z =nE . Let  be some test function in L*(0,T; H"), suppy c Q[ ?

('] .'E —nEwavdr=["[ o (E'~E)ydsdi+ [ [ (n' ~n)Eydsd.

On one hand

i

l//dxdt

<[

170,512 (Q)) H 12(0,T4 () "W 0,74 (Q)

Since Q2 is bounded, we deduce from eq. (27) and (31) that
j j E)ydxdt —0 (I - +o0).
On the other hand, let us note that Ey € L'(0,T;L*) . In fact

”EW”L‘(O,T;LZ) < ||E||L2(0,T;L“) ||W||L2(0,T;L") <.

Therefore, we deduce from eq. (27) that
[ ], ' =mEpdvdt -0 (1 — +0).

Thus n'E' - nE in I*(0,T;H"). So z=nE .

Hence taking / — oo from eq. (20)-(25), by using the density of @, in H}(Q) we get the

existence of local generalized solution for the periodic initial value problem (4)-(7). letting

D — oo, the existence of local solution for the initial value problem (4)-(7) can be obtain. By the

continuation extension principle and a prior estimate we can get the existence of global

generalized solution for problem (4)-(7).

We thus complete the proof of Theorem 2. Hence one can get Theorem 1.

Conclusion

This paper considers the existence of the generalized solution to the Cauchy problem for a

generalized Zakharov equation in two dimensions by a priori integral estimates and Galerkin

method, one has the existence of the global generalized solution to the problem.
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Discussion

One can regard (1)-(2) as the Langmuir turbulence parameterized by I' (0 <T" <1) and study

the asymptotic behavior of the systems (1)-(2) when I goes to zero.
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