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Abstract  

We study the problem of designing the mechanism for the augmented inner 

product . For the given goal function 

, we obtain the reflexive rectangle method 

correspondence V(•) and the reflexive rectangle method covering which is a partition. After 

that we construct the message space M, the equilibrium message function g and the outcome 

function h which constitute the mechanism . Finally, we demonstrate that the 

mechanism can realize the given goal function F and satisfy informational 

efficiency and decentralization. 
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1. Introduction 

A mechanism is a mathematical structure through which economic activity is guided and 

coordinated [29]. Mechanism design is initially proposed by Leonid Hurwicz (Nobel Laureate in 

Economics in 2007). Since the 1980s, much attention has been paid to widespread application of 

mechanism design. Such as auction [1, 2, 3, 9-20], public goods [4, 5], insurance [6, 24], tax [22], 

sequencing problems [27] and network economics [8]. Economists always tie the good 

mechanism to incentive compatibility or Pareto optimality or informational efficiency. The 

mechanism constructed in those research is only satisfied with incentive compatibility or 

optimality. However, there are a few studies on informationally efficient and decentralized 

mechanism. 

The reasons why we are so interested in designing the mechanism for the augmented inner 

product  are the following: (1) it plays an important 

role in economics [29], (2) the mechanism designed for the augmented inner product can satisfy 

informational efficiency and decentralization, (3) the mechanism for the given augmented 

one-dimensional inner product has been constructed by Hurwicz and Reiter 

by making use of condensation method which primarily transforms to , 

where [29]. However the mechanism for the augmented two-dimensional inner 

product  has not yet been constructed. 

    Our work is to construct the mechanism for the given goal function 

, we obtain the reflexive rectangle method 

correspondence and the reflexive rectangle method covering which is a partition. What 

is important is that we construct the informationally efficient and decentralized mechanism based 

on condensation method [29]. The paper is organized as follows: In section 2, many concepts and 

lots of important lemmas are given. In section 3, the main results are provided. In section 4, the 

conclusions are made. 
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2. Preliminaries 

In this section, we introduce some basic concepts and a number of important results which 

are used through this paper. For more details can be found in the book [29]. 

2.1 The reflexive rectangle method correspondence 

Let Θ be a parameter space, let ,  stand for the type space for the two participants 

respectively and Θ= . Let F(•):Θ→Z be a goal function. Let V (•):Θ be a rectangle 

correspondence, then we have V(θ) = A(θ)×B(θ) for all θ Θ, where A(θ) ⊆ , B(θ) ⊆ , and 

. 

Let Θ=  and let L(•):Θ  be a left rectangle method correspondence. Then for 

any =( ), we have L( )=A( ) , where ⊆ , = {B ⊆ 

: B, A( ) B⊆ } and . Let R(•):Θ  

be a right rectangle method correspondence. Then for any =( ) Θ, we get 

R( )= , where ⊆  {A⊆ : A, A 

⊆ } and ={ R( )= }. 

The following three Lemmas are used to construct reflexive rectangle method 

correspondence. 

Lemma 2.1 ([29]). Let Θ= . If ( ) = , then 

L( ) = R( ) 

for all . 

From above Lemma 2.1, the reflexive rectangle method correspondence V (•) can be defined 

by V (•)=L(•) = R(•). 

Lemma 2.2 ([29]). Let Θ= , let ⊆  and let ( ; ). If , 

then 
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for all . 

Lemma 2.3 ([29]). Let V(•):Θ be the the reflexive rectangle method correspondence. 

Then the set be a reflexive rectangle method covering. 

2.2 The reflexive rectangle method covering  

Let V(•):Θ be a correspondence and let G(•;•) be a function of the correspondence V(•) 

such that V( )={θ } for all  The next three facts are used to verify the 

reflexive rectangle method covering  is a partition. 

Lemma 2.4 ([29]). Let G(•):Θ , let , and let 

, where . Then if and only if 

 

for all θ . 

Lemma 2.5 ([29]). The correspondence V(•) is symmetric if and only if the function G(•;•) 

is symmetric. 

Note that the function G(•;•) is symmetric can be defined by  . 

Lemma 2.6 ([29]). The reflexive rectangle method covering  is a partition if and only if: 

(1) The reflexive rectangle method covering  is generated by a symmetric and 

self-belonging correspondence V(•):Θ . 

(2) The reflexive rectangle method covering is irreducible. 

Recall that the correspondence V(•) can be said to satisfy self-belonging if . 

2.3 The condensation setting 

Let x=( ) , and let  be a primary variable. Let y = ( ) , and let 

be a secondary variable, where i , j . Let w = ( ) . 
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The following results on condensation theory are used to construct the mechanism. 

Definition 2.7 ([29]). Let be a function on X Y . Then the Hessian matrix  is 

defined by 

 

 

 

 

 

 

 

The block Hessian matrix H(x, y) is given by 

H(x,y)=( ), 

and the block bordered Hessian matrix BH(x, y) is denoted by 

BH(x,y)=( ). 

Where 

(x,y)=  

is called a gradient vector and σ .  

Definition 2.8 ([29]). Let (x, y) be a function on X Y , let  be a function on 

W Y , let . Assume the function ,  and the function 

 is continuous and differentiable, for arbitrary (x, y) X Y , if 

, 

then the function (x, y) is called a condensed function, the function is called a 
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condensation form, the correspondence A(x) = ( ) is called a condensation 

correspondence, where σ  and i  

Definition 2.9 ([29]). Let a = ( ) and let b=( ) . If the sub-vector  and 

 satisfy the following conditions: 

(1) The Jacobin sub-matrix  and  are nonsingular. 

(2) There is at least one nonempty residual sub-vector between  and . 

Then the sub-vector  and  are called the residual sub-vector, where the Jacobin 

matrix can be defined by 

J= . 

Lemma 2.10 ([29]). Let H be the block Hessian matrix and let BH be the block bordered 

Hessian matrix, then the following statements hold: 

(1) There exists a condensation correspondence A(•) = ( ) if and only if 

R(BH) r; 

(2) There exists a condensation correspondence A(•) = ( ) if 

R(BH) r, R(H) = r. 

2.4 The property of mechanism 

Let π = (M, g, h) be a mechanism. Write M for the message space, denote the equilibrium 

message function by g, and h stands for the outcome function. 

Lemma 2.11 ([29]). Let F(•):Θ be a goal function, and let  be a 

equilibrium message correspondence. Then the mechanism  can be said to realize 

the goal function F if the following conditions hold: 

(1) There exists a message m  M such that g(m,θ)= 0 for all θ ; 

(2) There exists a equilibrium message m µ(θ) such that h(m) = F(θ) for all θ Θ. 
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Lemma 2.12 ([29]). Let F(•):Θ  be a goal function, and let C be a covering. Then the 

covering C is called a F-maximal covering if and only if the covering C is a reflexive rectangle 

method covering. 

In addition, informational efficiency can be influenced by the coarsening of the covering C, 

the dimension of the message space M, the equation efficiency and the redundancy. 

 

3. Main results 

Let Θ= be a parameter space, and let θ=(a,b) , a = ( , ) , 

b=( ) . 

Lemma 3.1 Let  be a goal function on Θ and 

let V(•):Θ be a rectangle correspondence. Then there exists the reflexive rectangle method 

correspondence V(•):Θ such that 

V( )={a : }  

for all θ Θ, where =  and =F( ). 

Proof. For each Θ, suppose that V( )=A( ) B( ). 

Firstly, let A( ) be a maximal set which satisfies A( ) { }⊆ . 

Then for arbitrary a A( ), we have 

F(a, )=F( )= , 

specifically, 

= .              (1) 

Let 

= =0     (2) 

by (2), we obtain 
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A( )={a }.                      (3) 

Secondly, from (1), we have 

,                   (4) 

fixed A( )={a }, let B( ) be a maximal set that satisfies A( ) B( ) 

⊆ . Then for any a A( ), and any b , we get 

F(a,b)= , 

namely, 

= .                      (5) 

Substituting (4) into (5), then we have 

( ) +(1– ) =0.    (6) 

It is obvious (6) is an identity with respect to , we therefore obtain 

– =0,                                 (7) 

1– =0,                                    (8) 

.                            (9) 

By (7), (8), (9). Let 

( )= – =0,                         (10) 

( )= – =0,                         (11) 

( )= – =0.                         (12) 

Then we can obtain 

.            (13) 
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It means A( ) B( ) is a left rectangle, namely A( ) B( )=L( ). 

 Thirdly fixed , let be a maximal set which 

satisfies  ⊆ . Then for any a and any b , we obtain 

F(a,b)=F( ), 

namely, 

= . 

As b , namely = , = , = , we have 

= . 

We can infer that  = A( ). It reveals that A( ) B( ) is a right rectangle, namely 

A( ) B( )=R( ). 

From Lemma 2.1 and Lemma 2.2, we can conclude that the rectangle 

A( ) B( ) = {a : }  is a reflexive 

rectangle, and the rectangle correspondence V(•):Θ is the reflexive rectangle method 

correspondence. 

The proof has been completed. 

Lemma 3.2 Let V(•):Θ be the reflexive rectangle method correspondence as described 

in Lemma 3.1. Then the reflexive rectangle method covering  = {V ( ): Θ} is a partition. 

Proof. From Lemma 2.3 and Lemma 3.1, we know that the set  = {V ( ): Θ} is a 

reflexive rectangle method covering. From Lemma 2.5 and Lemma 2.6, we only need to prove 

G( ,θ) = 0 G(θ, ) = 0. 

Firstly we prove G( ,θ) = 0 G(θ, ) = 0. 

By (2), (10), (11), (12), we have 
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, 

( )= – =0,                         

( )= – =0,                         

( )= – =0. 

Since b = , we arrive at 

(14) 

( )= – = ( )=0,          (15)                        

( )= – = ( )=0,          (16)                           

( )= – = ( )=0.          (17) 

By Lemma 2.4, we therefore obtain 

G(θ, ) = 0. 

Furthermore, by (14), (15), (16), (17), we can immediately deduce that 

G(θ, ) = 0  G( ,θ) = 0. 

The assertion is established. 

Theorem 3.3 Let  be a goal function on Θ. 

Then there exists the mechanism π = (M, g, h) such that the message space M is denoted by 

M = {( , , , ): = , = , = , = , Θ}; 

the equilibrium message function g is denoted by 

, 

, 



103 
 

, 

; 

the outcome function h is denoted by 

h(m) = . 

Where = − , = − ,  = − , =  and = F( ). 

Proof. The proof of Theorem 3.3 can be divided into the following five steps. 

Step one. Determine the number of the condensation correspondence. 

By Lemma 3.1, let 

= , 

( )= – = ,                         

( )= – = ,                         

( )= – = , 

F( )= = , 

and let  be the primary variable, let θ = ( ) be the 

secondary variable. 

From Definition 2.7, we have 

 
      

 

 
 

0 0 0 0 0  

 
 

0 0 0 0 0  

  
1 0 0 0 0     ,            (18) 

 
 

0 0 0 0 0  

 
 

0 0 0 0 0  
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where σ = 2,3,4,5. 

Then we get 

.                         (20) 

It is clear that R(H) = 2. 

Moreover, we have 

  
     

 

 
 –  0 0 0 

 
 

 
 –  0 0 0 

 
 

   
-1 0 0 

 
,    (21) 

 
  

0 -1 0 
 

 

 
 

0 0 0 -1 1  

 

Then we can obtain 

BH= (22) 

we therefore get 

 
      

  

 
 

0 0 0 0 0   

  
0 0 0 0 0   

 
 

0 0 0 0 0    ,    (19) 

 
 

0 0 0 0 0   

 
 

0 0 0 0 0   
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BH . 

Hence R(BH) = 4, it is obvious that R(BH) R(H). 

Now we need amplify the secondary variable θ=( ) into the Variable 

θ=( ). 

Then let 

= , 

= , 

= , 

= , 

= . 

By Definition 2.7, we can obtain 

 

 

          
  

 
 

0 0 0 0 0 –  0 0 0 0   

 
 

0 0 0 0 0 –  0 0 0 0   

 

 
1 0 0 0 0 

 
0 0 0 0 , (23)  

 
 

0 1 0 0 0 
 

0 0 0 0   

 
 

0 0 0 0 0 -1 0 0 0 0   
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0 0 0 0 0 0 0 0 0 0  

 
 

0 0 0 0 0 0 0 0 0 0  

 

 
0 0 0 0 0 0 -1 0 0 0 ,(24) 

 
 

0 0 0 0 0 0 0 0 0 0  

 
 

0 0 0 0 0 0 0 0 0 0  

 

 

 

          
 

 
 

0 0 0 0 0 0 0 0 0 0  

 
 

0 0 0 0 0 0 0 0 0 0  

 

 
0 0 0 0 0 0 0 0 0 0 ,(25) 

 
 

0 0 0 0 0 0 0 -1 0 0  

 
 

0 0 0 0 0 0 0 0 0 0  

 

 

  

          
 

 
 

0 0 0 0 0 0 0 0 0 0  

 
 

0 0 0 0 0 0 0 0 0 0  

 

 
0 0 0 0 0 0 0 0 0 0 ,(26) 
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0 0 0 0 0 0 0 0 0 0  

 
 

0 0 0 0 0 0 0 0 -1 0  

 

 

 

          
 

 
 

0 0 0 0 0 0 0 0 0 
 

 

 
 

0 0 0 0 0 0 0 0 0 
 

 

 

 
0 0 0 0 0 0 0 0 0 

 
.(27) 

 
 

0 0 0 0 0 0 0 0 0 
 

 

 
 

0 0 0 0 0 0 0 0 0 1  

 

Then we get 

                            (28) 

Thus we have 

.                                 (29) 

It is clear that R( ) = 4. 

Furthermore we arrive at 

  

     

 

 
 –  0 0 0 

 
 

 
 –  0 0 0 
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   -  0 0 
 

.  (30) 

 
  

0 -  0 
 

 

 
 1-  0 0 -   

 

 

Then we obtain 

= .              (31) 

Take 

 

Then we have 

. 

It is easy that R( ) = 4. 

By Lemma 2.10, we can obtain that the number of the condensation correspondence is four. 

Step two. Construct the condensation correspondence. 

We choose a special matrix  which satisfies R( ) = 4 in the block Hessian Matrix . Let 

  
( ) ( ) ( ) ( ) 

 

 
 

0 0 0 
 

 

 
 

-1 0 0 
 

.  (32) 

  
0 -1 0 

 
 

 
 

0 0 -1 1  

 

Then the condensation correspondence can be given by 
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= = , 

, 

, 

 

Step three. Construct the equations and introduce the intermediate variable. Let W be 

the intermediate variables, and i {1, 2, 3, 4}. From Definition 2.9, we take Θ, 

where and . 

Then the equations can be constructed as follows. 

   .                  (33) 

Solving the equations (33), we can obtain 

.                          (34) 

Step four. Construct the condensation form , i∈{1, 2, 3, 4, 5}. 

Let  where i∈{1, 2, 3, 4, 5} and . Then we have 

= , 

, 
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, 

, 

. 

Step five. Construct the message space M, the equilibrium message function g and the 

outcome function h. 

Based on the analysis above, the message space M is denoted by 

M = {( , , , ): = , = , = , = , Θ}; 

the equilibrium message function g is denoted by 

, 

, 

, 

; 

the outcome function h is denoted by 

h(m) =  = = . 

This completes the proof of the Theorem 3.3. 

Theorem 3.4 Let  be a goal function on Θ, and 

let π = (M, g, h) be the mechanism described in Theorem 3.3. Then the following statements hold. 

(a) The mechanism π = (M, g, h) can realize the goal function F. 

(b)The mechanism π = (M, g, h) satisfies informational efficiency and decentralization. 

Proof. (a) From Theorem 3.3, for each θ = (a, b) Θ, assume that there exists a message m 

satisfies the following equations 

            (35) 

solving the equations (35), then we have 
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 .               (36) 

 

It means there exists an equilibrium message m which is corresponding to θ for allθ∈Θ. 

In addition, suppose that there exists an equilibrium message m that is corresponding toθfor allθ

∈Θ, then we get 

h(m)= = =F(a,b)=F(θ). 

By Lemma 2.11, we can infer that the mechanism π = (M, g, h) constructed by Theorem 3.3 can 

realize the given goal function . 

This completes the proof of (a). 

(b) From Theorem 3.3, we have 

, 

, 

, 

. 

Note that the equilibrium message function depends 

only on the type variable a = ( , ), and the equilibrium message function 

,  and depend only on the 

type variable b = ( , , ). Hence the mechanism  (M, g, h) can be satisfied with 

decentralization. 

Furthermore, on one hand, by Lemma 2.12, we know the reflexive rectangle method 

covering  is a F-maximal covering. On the other hand, from Theorem 3.3, we obtain dim(M) 

= 4. Finally from Lemma 3.2, it means that there are no the redundant rectangles. Therefore 

minimal informational size can be achievable by the mechanism π = (M, g, h). 
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This completes the proof of (b). 

 

Discussion 

The augmented inner product is defined and proposed by Leonid Hurwicz (Nobel Laureate 

in Economics in 2007) in the economic design theory. It plays an important role in economics and 

it is a discrete function. But there are many goal functions which are continuous in many studies. 

Next, our mechanism is constructed based on the economic design theory and condensation 

method which have logical and rigorous mathematical deduction and characterized by the agents 

without strategic behaviors. However, the mechanism design theory in some research can be 

illustrated by the agents with behaviors.  

Finally, a good mechanism can be measured by incentive compatibility or Pareto optimality 

or informational efficiency. Our mechanism which is designed for the augmented inner product 

can be written π = (M, g, h), it is mainly expressed by the message space M, the equilibrium 

message function g and the outcome function h, and the mechanism π = (M, g, h) is satisfied with 

informational efficiency and decentralization. But in many research, the mechanism is mainly 

constructed by the different expressions and meets incentive compatibility or Pareto optimality or 

optimality.    

In conclusion, the analysis in this paper shows that informationally efficient mechanism 

plays a crucial role for a good mechanism and informational efficiency can be used to reduce the 

cost of the economic and information. 

 

Conclusions 

In this paper, we focus on designing the mechanism π = (M, g, h) for the augmented inner 

product . We construct the reflexive rectangle 

method correspondence V (•) and the reflexive rectangle method covering  which is a partition. 

Furthermore, we construct the message space M, the equilibrium message function g and the 

outcome function h which constitute the mechanism π = (M, g, h). Finally we prove the 

mechanism π = (M, g, h) can realize the goal function F and satisfy informational efficiency and 
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decentralization. 
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