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Abstract

Similarity measure is an important tool to measure the degree of resemblance between two

intuitionistic fuzzy sets. In this paper, in order to overcome the counter-intuitive in some cases, a

new similarity measure of intuitionistic fuzzy sets is constructed and successively applied in

pattern recognition and medical diagnosis. Based on the proposed similarity measure, a new

decision making method is put forward for the multi-attribute decision making (MADM) problem

with attribute values expressed by intuitionistic fuzzy set. When the attribute weights information

is completely unknown, maximizing deviation method is developed and used to determine the

weights. When the attribute weights information is partly known, an optimization model is

established for solving the attribute weights. Two MADM examples are given to illustrate the

feasibility and practicability of the proposed decision making method.

Key words Similarity measure, intuitionistic fuzzy set, multi-attribute decision making

method, TOPSIS

1. Introduction

Fuzzy set was firstly proposed by Zadeh [1], and has been extensively studied and applied to

many fields, such as decision making, medical diagnosis. Though fuzzy sets have gained great
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success, but in some cases, especially when the decision maker wants to express his/her hesitation

about some evaluation attribute values, fuzzy sets may not be a suitable tool. Intuitionistic fuzzy

set (IFS), proposed by Atanassov [2], can well model this situation by adding a non-membership

degree. The applications of IFS are permeated into many fields, including decision making

problems [3-10], medical diagnosis [11, 12], pattern recognitions [13-15] and image processings

[16, 17]. Similarity measure is an important tool for measuring the degree of similarity between

two IFSs. Many similarity measures of IFSs are investigated in the literature [18, 19]. Li and

Chen [20] firstly gave the definition of the similarity measure between IFSs, and they also

proposed some similarity measures simultaneously applying them in pattern recognition. Li and

Chen’s similarity measure takes into the medians of two intervals only, and thus it can easily be

pointed out the counter-intuitive examples, then Liang and Shi [21] put forward some more

reasonable similarity measures through numerical comparisons with Li and Chen’s similarity

measures. Mitchell [22] proposed an improved similarity from a statistical viewpoint on the basis

of Li and Chen’s similarity measure. Some similarity measures have been constructed based on

distance measures, such as Szmidt and Kacprzyk [23] constructed similarity measures using the

Hamming distance measure and put them into the multi-attribute group decision making problem.

Hung and Yang [24] constructed similarity measure using Hausdorff distance. Hung and Yang

[25] induced similarity measures using pL measure. Xu and Chen [26] gave comprehensive

overview and comparison of distance and similarity measures between IFSs. Ye [27] proposed a

cosine measure for IFSs using cosine function. To overview the prior-proposed similarity,

Baccour et al. [19] summarized the existed similarity measures and pointed out that each above

similarity measure has drawbacks. More recently, Hwang and Yang [28] given a new

construction for similarity measures for IFSs by defined lower, upper and middle fuzzy sets, and

they found that the new constructed similarity measures can improve most existing similarity

measures.

The main aim of this paper is to put forward a similarity measure for IFSs, which can better

measure the degree of similarity measure between IFSs. Because there are still drawbacks on the

ranking function and operation rules about IFSs [29], the similarity measure can be used to

overcome these shortcomings. Thus this paper will develop a new decision making method based

on the proposed similarity measure for the MADM under intuitionistic environment with attribute

weights information is partly known.

The rest of this paper is organized as follows: In Section 2, we first briefly recall the

definition and similarity measure of IFSs, and then we review the several existing similarity
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measures. In Section 3, we construct a new similarity measure of IFSs, and compare it with other

similarity measures through some examples. In Section 4, based on the new similarity measure

and TOPSIS method, we put forward a new decision making method for the MADM problem in

which attribute values expressed by intuitionistic fuzzy numbers and attribute weights are partly

known. Section 5 gives the discussion of the proposed method through two examples. Finally, the

conclusions are given in Section 6.

2. Intuitionistic Fuzzy Set and Similarity Measures

In this section we firstly review the IFS and similarity measures given by other authors.

Definition 1 [2]. Let 1 2{ , ,..., }nX x x x be the universe of discourse, {( , ( ), ( )) | }A AA x x x x X  

is called an IFS in X , where ( ) : [0,1]A x X  and ( ) : [0,1]A x X  are the membership degree and

non-membership degree functions of x belonging to A , respectively, and they satisfy

0 ( ) ( ) 1A Ax x    for x X  . Each element ( , ( ), ( ))A Ax x x  of A is called intuitionistic fuzzy

number (IFN), and often briefly noted by ( ( ), ( ))A Ax x  .

Definition 2 [2]. For each IFN ( , ( ), ( ))A Ax x x  , ( ) 1 ( ) ( )A A Ax x x     is called the hesitancy

degree, which can express the hesitancy degree of decision maker. Obviously, 0 ( ) 1A x  .

Definition 3[2,30]. Let {( , ( ), ( )) | }i A i A i iA x x x x X   and {( , ( ), ( )) | }i B i B i iB x x x x X   be two IFSs,

then

(1) A B if and only if ( ) ( ), ( ) ( ),A i B i A i B i ix x x x x X       ;

(2) A B ,if and only if A B and B A , i.e. ( ) ( ), ( ) ( ),A i B i A i B i ix x x x x X       ;

(3)The complementary set of A noted by CA is { , ( ), ( ) | }C
i A i A i iA x x x x X    

In the following discussion, we always use ( )IFSs X denote the set of all IFSs in X . The

Definition 4 will introduce the definition of similarity measure between two IFSs A and B .

Definition 4 [18]. Let A and B be two IFSs, and S is a mapping : ( ) ( ) [0,1]S IFSs X IFSs X  .

Then ( , )S A B is called the similarity measure between A and B if it satisfies the following

conditions:

(i) 0 ( , ) 1S A B 

(ii) ( , ) 1S A B  if A B ;

(iii) ( , ) ( , )S A B S B A

(iv) If A B C  , then ( , ) min{ ( , ), ( , )}S A C S A B S B C .

(v) ( , ) 0CS A A  if and only if A is a crisp set.
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In the following, we will give a brief review of existing similarity measures of IFSs.

Considering two IFSs {( , ( ), ( )) | }i A i A i iA x x x x X   and {( , ( ), ( )) | }i B i B i iB x x x x X   , the existing

similarity measures are reviewed as follows:

(1) Chen’s similarity measure is defined as [31]

1

1
( , ) 1 | ( ) ( ) |

2

n

C A i B i
i

S A B S x S x
n 

  

where ( ) ( ) ( )A i A i A iS x x x   and ( ) ( ) ( )B i B i B iS x x x   .

But, as Hong and Kim [31] noticed that when ( ) ( )A i B iS x S x , ( , ) 1CS A B  ,which is counter-

intuitive, e.g., for 0 ( ,0,0)A x and 0 ( ,0.5,0.5)B x , we have 0 0( , ) 1CS A B  .

(2) Hong and Kim’s similarity measures are defined as [32]

1

1
( , ) 1 (| ( ) ( ) | | ( ) ( ) |)

2

n

H A i B i A i B i
i

S A B x x x x
n

   


    

1

1
( , ) 1 (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)

4

n

L A i B i A i B i A i B i
i

S A B S x S x x x x x
n

   


      

Since ( , )HS A B and ( , )LS A B only take into account the absolute values, it does not distinguish

the positive from negative differences, e.g., for 1 ( ,0.3,0.3)A x , 1 ( ,0.4,0.4)B x , 1 ( ,0.3,0.4)C x and

1 ( ,0.4,0.3)D x , we have 1 1 1 1( , ) ( , ) 0.9H HS A B S C D  , and for

2 ( ,0.4,0.2)A x , 2 ( ,0.5,0.3)B x , 2 ( ,0.5,0.2)C x , we have 2 2 2 2( , ) ( , ) 0.95L LS A B S A C  which are also

counter-intuitive.

(3) Li et al.’s similarity measure is defined as [33]

1/2

2 2

1

1
( , ) 1 (( ( ) ( )) ( ( ) ( ) )

2

n

O A i B i A i B i
i

S A B x x x x
n

   


 
     

 


The same problem like with ( , )HS A B occurs with the similarity measure ( , )OS A B due to the

result of 1 1 1 1( , ) ( , ) 0.9O OS A B S C D  .

(4) Li and Chen’s similarity measure is defined as [20]

1

1
( , ) 1 | ( ) ( ) |

n
p pp

d A i B i
n

i

S A B m x m x
p 

  

Where
( ) 1 ( )

( )
2

A i A i
A i

x x
m x

  
 ,

( ) 1 ( )
( )

2
B i B i

B i

x x
m x

  
 and 1 p   .

The similarity measure takes into the medians of two intervals only, and thus we can easily

point out the counter-intuitive examples, e.g., 2 ( ,0.4,0.2)A x , 2 ( ,0.5,0.3)B x , we have 2 2( , ) 1p
dS A B 

for each p .

(5) Mitchell’s similarity measure is defined as [22]
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1
( , ) ( ( , ) ( , ))

2
HBS A B A B A B   

Where
1

1
( , ) 1 | ( ) ( ) |

n
pp

A i B i
n

i

A B x x
p

  


   and
1

1
( , ) 1 | ( ) ( ) |

n
pp

A i B i
n

i

A B x x
p

  


   .

Mitchell [22] modified Li and Chen’s similarity measure using a statistical approach by

interpreting IFSs as families of ordered fuzzy sets. Unfortunately, when 1p  , ( , )HBS A B is equal to

( , )HS A B , and thus has the same counter-intuitive results as ( , )HS A B .

(6) To overcome the drawbacks of Li and Chen’s similarity measure, Liang and Shi [21] also

proposed three similarity measures as follows:

(i)
1

1
( , ) 1 ( ( ) ( ))

n
p pp

e AB i AB ip
i

S A B x x
n

  


  

where
| ( ) ( ) |

( )
2

A i B i
AB i

x x
x

 



 ,

| (1 ( )) (1 ( )) |
( )

2
A i B i

AB i

x x
x

 


  
 and 1 p   .

But, for ( , )p
eS A B ,when 1p  , ( , ) ( , ) ( , )p

e HB HS A B S A B S A B  , and thus has the same counter-

intuitive results as ( , )HS A B .

(ii) 1 2
1

1
( , ) 1 ( ( ) ( ))

n
p pp

s s i s ip
i

S A B x x
n

 


  

where 1 1 2 2
1 2

| ( ) ( ) | | ( ) ( ) |
( ) , ( )

2 2
A i B i A i B i

s i s i

m x m x m x m x
x x 

 
 

1 2

| ( ) ( ) | | ( ) 1 ( ) |
( ) , ( )

2 2
A i A i A i A i

A i A i

x m x m x x
m x m x

   
  ,

( ) 1 ( )
( )

2
A i A i

A i

x x
m x

  
 , and

( ) 1 ( )
( )

2
B i B i

B i

x x
m x

  
 .

Though ( , )p
sS A B avoids the problematic results obtained from ( , )p

dS A B when the IFSs have

equal medians, it still has counter-intuitive results in some cases. For example, for 2 ( ,0.4,0.2)A x ,

2 ( ,0.5,0.3)B x , 2 ( ,0.5,0.2)C x , we have 2 2 2 2( , ) ( , ) 0.95p p
s sS A B S A C  , which also seems to be not

accordance with the fact.

(iii)
3

1 1

1
( , ) 1 ( ( ))

n
p pp

h m m ip
i m

S A B w x
n


 

   

where 1 2
1 2 3

( ) ( )
( ) , ( ) | ( ) ( ) |, ( ) max{ ( ), ( )} min{ ( ), ( )}

2
s i s i

i i A i B i i A i B i A i B i

x x
x x m x m x x l x l x l x l x

 
  


     ,

1 ( ) ( )
( )

2
A i A i

A i

x x
l x

  
 , and

1 ( ) ( )
( )

2
B i B i

B i

x x
l x

  
 .

The counter-intuitive occurs under the case of 1 1 1 1( , ) ( , ) 0.933p p
h hS A B S C D  , which has the same

drawback with ( , )HS A B and ( , )OS A B .
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(7) Hung and Yang’s similarity measures ( , )k
HYS A B ( 1, 2,3)k  are defined as [24]

1 ( , ) 1 ( , )HY HS A B d A B  ,
( , ) 1

2

1
( , )

1

Hd A B

HY

e e
S A B

e

 







and 3 1 ( , )

( , )
1 ( , )

H
HY

H

d A B
S A B

d A B





,where ( , )Hd A B is the

Hausdorff distance measure, i.e.

1

( , ) max{| ( ) ( ) |,| ( ) ( ) |}
n

H A i B i A i B i
i

d A B x x x x   


   .

Unfortunately, we have the results 1 1
1 1 1 1( , ) ( , ) 0.9HY HYS A B S C D  , 2 2

1 1 1 1( , ) ( , ) 0.85HY HYS A B S C D  and

3 3
1 1 1 1( , ) ( , ) 0.82HY HYS A B S C D  which imply that Hung and Yang’s similarity measures also have

counter-intuitive result.

(8) Hwang and Yang’s similarity measures [28] are defined based on the lower, upper and

middle fuzzy sets which is a new construction method. The new constructed similarity measures

improve the original similarity measures, but there still exists counter-intuitive result. For

example, the following similarity

1

1 1
( , ) 1 ( ( ) ( ) | | ( ) ( ) | + | ( ) ( )- ( ) ( ) |)

3 2

n

A i B i A i B i A i B i A i B i
i

S A B x x x x x x x x
n

       


      

is a similarity measure satisfying the constructing rule of Hwang and Yang’s similarity measures

[28]. Considering with the IFSs 3 ( ,0.2,0.6)A x , 3 ( ,0.3,0.5)B x and 3 ( ,0.1,0.7)C x . From the

perspective of closer to against the evidence, similarity measure 3 3( , )S A C should bigger than

3 3( , )S A B . But the Hwang and Yang’s similarity measures all get the result 3 3 3 3( , ) ( , )S A C S A B .

(9) Ye’s cosine similarity measure defined as [27]

2 2 2 2
1

( ) ( ) ( ) ( )1
( , )

( ) ( ) ( ) ( )

n
A i B i A i A i

IFS
i

A i B i A i B i

x x x x
C A B

n x x x x

   

   




 


The similarity measure still has counter-intuitive example, such as

4 4( ,0.1,0.1), ( ,0.4,0.4)A x B x  , we have ( , ) 1IFSC A B  .

Remark 1. From above analysis, we see that the existing similarity measures have counter-

intuitive cases, and thus in the next section, we will put forward a better similarity measure which

can overcome the counter-intuitive cases.

3. A New Effective Similarity Measure Proposed

To avoid counter-intuitive phenomena, a new effective similarity measure of IFSs is induced

in the follows.

Definition 5. Assume that {( , ( ), ( )) | }i A i A i iA x x x x X   and {( , ( ), ( )) | }i B i B i iB x x x x X   are two

IFSs, then a similarity measure can be defined as
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2 2 2 2 2 2

1

1
( , ) 1 (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)

3

n

R A i B i A i B i A i B i
i

S A B x x x x m x m x
n

   


       (1)

where
( ) 1 ( )

( )
2

A i A i
A i

x x
m x

  
 and

( ) 1 ( )
( )

2
B i B i

B i

x x
m x

  
 .

Theorem 1. The measure ( , )NS A B is a similarity measure of IFSs.

Proof. To illustrate ( , )NS A B being a similarity measure of IFSs, we only need to prove it

satisfies the properties in Definition 4.

(i) Obviously, for every ix , we have

2 20 | ( ) ( ) | 1A i B ix x    , 2 20 | ( ) ( ) | 1A i B ix x    and 2 20 | ( ) ( ) | 1A i B im x m x  

then 0 ( , ) 1RS A B  .

(ii) If A B , we have ( ) ( ), ( ) ( ),A i B i A i B i ix x x x x X       . Then ( , ) 1RS A B  .

(iii) 2 2 2 2 2 2

1

1
( , ) 1 (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |) ( , )

3

n

R B i A i B i A i B i A i R
i

S B A x x x x m x m x S A B
n

   


       

(iv) If A B C  , we have for ix X  , ( ) ( ) ( ), ( ) ( ) ( )A i B i C i A i B i C ix x x x x x         .Then it is

obviously that

2 2 2 2| ( ) ( ) | | ( ) ( ) |A i B i A i C ix x x x      , 2 2 2 2| ( ) ( ) | | ( ) ( ) |B i C i A i C ix x x x     

2 2 2 2| ( ) ( ) | | ( ) ( ) |A i B i A i C ix x x x      , 2 2 2 2| ( ) ( ) | | ( ) ( ) |B i C i A i C ix x x x     

and

( ) ( ) ( ) ( ) ( ) ( )A i A i B i B i C i C ix x x x x x          i.e. ( ) ( ) ( )A i B i C iS x S x S x 

Then

| ( ) ( ) | | ( ) ( ) |B i A i C i A iS x S x S x S x   , ( ) ( ) ( ) ( )A i B i A i C iS x S x S x S x  

and

| ( ) ( ) | | ( ) ( ) |C i B i C i A iS x S x S x S x   , ( ) ( ) ( ) ( )B i C i A i C iS x S x S x S x  

Consequently

2 2

2 2

| ( ) ( ) | | ( ) ( ) | ( ( ) ( ))

1
| ( ) ( ) | (2 ( ) ( ))

4

1
| ( ) ( ) | (2 ( ) ( ))

4

| ( ) ( ) |

A i B i A i B i A i B i

A i B i A i B i

A i C i A i C i

A i C i

m x m x m x m x m x m x

S x S x S x S x

S x S x S x S x

m x m x

    

   

   

 

and
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2 2

2 2

| ( ) ( ) |

1
| ( ) ( ) | (2 ( ) ( ))

4

1
| ( ) ( ) | (2 ( ) ( ))

4

| ( ) ( ) |

B i C i

B i C i B i C i

A i C i A i C i

A i C i

m x m x

S x S x S x S x

S x S x S x S x

m x m x



   

   

 

And we can prove ( , ) ( , )R RS A B S A C and ( , ) ( , )R RS B C S A C .

(v) If A is a crisp set, we have ( ) 0A ix  or 1, for ix X  ,

(a) If ix X  , ( ) 0A ix  , we have ( ) 1A ix  ,
( ) 1 ( )

( ) 0
2

A i A i
A i

x x
m x

  
  , ( ) 1C iA

x  , ( ) 0C iA
x 

and
( ) 1 ( )

( ) 1
2

C C

C

i iA A
iA

x x
m x

  
 

Then

2 2 2 2 2 2

1

1

1
( , ) 1 (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)

3

1
1 (| 0 1 | |1 0 | | 0 1 |) 0

3

C C C

n
C

R A i i A i i A i iA A A
i

n

i

S A A x x x x m x m x
n

n

   




      

       





(b) for ix X  , ( ) 1A ix  , similarly to the proof of case (a), we can prove ( , ) 0C
RS A A  .□ 

If we consider the important degree of ix , a weighted similarity measure between IFS A

and B is proposed as follows:

2 2 2 2 2 2

1

1
( , ) 1 (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)

3

n

WR i A i B i A i B i A i B i
i

S A B w x x x x m x m x   


      

where [0,1]iw  ( 1,2,..., )i n is the important degree of ix , and
1

1
n

i
i

w


 .

If we set 1/iw n ( 1,2,..., )i n , then ( , ) ( , )WR RS A B S A B . Similar to the proof process of

( , )RS A B , we can easily prove that the weighted similarity measure ( , )WRS A B also satisfies the

conditions in Definition 4,

Remark 2. To demonstrate the reasonability of the new proposed similarity measure, the

similarity measures are calculated with respect to the above mentioned IFSs:

0 0( , ) 0.8333RS A B  , 1 1 1 1( , ) 0.9533, ( , ) 0.9200R RS A B S C D  , 2 2 2 2( , ) 0.9533, ( , ) 0.9492R RS A B S A C  .

The result seems to be reasonable and the proposed similarity measures can have a stronger

discrimination among them.

In the follows, we will give two examples in pattern recognition and medical diagnosis to

demonstrate the effectiveness and practicability of the proposed similarity measure.
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Example 1 We consider the pattern recognition problem discussed in ( Li and Chen [20]; Ye

[27]). There are three patterns 1C , 2C and 3C , which are represented by the following IFSs in the

given finite universe 1 2 3{ , , }X x x x , respectively:

1 1 2 3

2 1 2 3

3 1 2 3

{( ,1.0,0.0), ( ,0.8,0.0), ( ,0.7,0.1)}

{( ,0.8,0.1), ( ,1.0,0.0), ( ,0.9,0.0)}

{( ,0.6,0.2), ( ,0.8,0.0), ( ,1.0,0.0)}

C x x x

C x x x

C x x x







Given an unknown pattern Q , which is represented by the IFS:

1 2 3{( ,0.5,0.3), ( ,0.6,0.2), ( ,0.8,0.1)}Q x x x .

The task is to classify the pattern Q in one of the class 1 2,C C and 3C . According to the

recognition principle of maximum degree of similarity between IFSs, the process of assigning the

pattern Q to kC is described by

1 3
arg max{ ( , )}R i

i
k S C Q

 
 .

(2)

By Eq.(1), we can compute the similarity measure between ( 1,2,3)iC i  with Q :

1( , ) 0.7386RS C Q  , 2( , ) 0.7353RS C Q  and 3( , ) 0.8247RS C Q 

Then we can observe that the pattern Q should be classified in 3C according to the

recognition rule given by Eq. (2). This result is in agreement with the one obtained in (Li and

Chen [20]; Ye [27]).

Example 2 We consider the medical diagnosis problem discussed in (Vlachos and Sergiadis

[34]). Let us consider a set of diagnoses Q = { 1Q (Viral fever), 2Q (Malaria), 3Q (Typhoid), 4Q

(Stomach problem), 5Q (Chest problem)}, and a set of symptoms S ={ 1s (Temperature),

2s (Headache), 3s (Stomach pain), 4s (Cough), 5s (Chest pain)}.

Each diagnosis ( 1,2,3,4,5)iQ i  can be represented by the following IFSs, respectively:

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

{( ,0.4,0.0), ( ,0.3,0.5), ( ,0.1,0.7), ( ,0.4,0.3), ( ,0.1,0.7)}

{( ,0.7,0.0), ( ,0.2,0.6), ( ,0.0,0.9), ( ,0.7,0.0), ( ,0.1,0.8)}

{( ,0.3,0.3), ( ,0.6,0.1), ( ,0.2,0.7), ( ,0.2,0.6), ( ,0.

Q s s s s s

Q s s s s s

Q s s s s s







4 1 2 3 4 5

5 1 2 3 4 5

1,0.9)}

{( ,0.1,0.7), ( ,0.2,0.4), ( ,0.8,0.0), ( ,0.2,0.7), ( ,0.2,0.7)}

{( ,0.1,0.8), ( ,0.0,0.8), ( ,0.2,0.8), ( ,0.2,0.8), ( ,0.8,0.1)}

Q s s s s s

Q s s s s s





Suppose a patient P named Bob, with respect to all the symptoms, can be represented by the

following IFS:

1 2 3 4 5{( ,0.0,0.8), ( ,0.4,0.4), ( ,0.6,0.1), ( ,0.1,0.7), ( ,0.1,0.8)}P s s s s s
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Our aim is to determine the patient P belong to which diagnosis of ( 1,2,3,4,5)iQ i  . Because

the medical diagnosis problem is actually a pattern recognition problem, then we can use the

recognition rule given as follows:

If
1 5

arg max{ ( , )}R i
i

k S Q P
 

 , then we assign the patient P to the diagnosis kQ .

By the Eq. (2), we can obtain the following results:

1 2 3 4( , ) , ( , ) , ( ,0.749 ) , ( , )3 0.6272 0.7912 0.9125R R R RS Q P S Q P S Q P S Q P    , and 5( , ) 0.7058RS Q P 

Then, we can assign the patient P to the diagnosis 4Q (Stomach problem), and the result is in

agreement with the one obtained in (Vlachos and Sergiadis [34]).

4. Intuitionistic Fuzzy MADM Problem

In this section, we will propose a new decision making method for the MADM problem in

which the attribute values are expressed by intuitionistic fuzzy numbers based on the proposed

similarity measures of IFSs. Firstly, we will introduce the MADM model, and then give the

specific calculation steps.

For a MADM problem, let 1 2{ , , , }mA A A A  is a set of m alternatives, 1 2{ , , , }nO o o o  is a set of

n attributes. Suppose that there exists an alternative set consisting of n parallel alternatives from

which the most desirable alternative is to be selected. Ratings of alternatives iA A on attributes

jo O are expressed with the intuitionistic fuzzy number ( , )ij ij ija   , respectively, where ij and

ij are the membership (satisfactory) and non-membership (non-satisfactory) degrees of the

alternative iA A on the attribute jo O , with respect to the fuzzy concept “excellence” given by

the decision maker, so that they satisfy the conditions: 0 1ij  , 0 1ij  and 0 1ij ij   

( 1,2, ,i n  ; 1,2, ,j m  ).

Thus, a MADM problem can be expressed with the decision matrix ( )ij m na  D :

1 2

1 11 11 12 12 1 1

2 21 21 22 22 2 2

1 1 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( )

( , ) ( , ) ( , )

n

n n

n n

ij m n

m m m m m mn mn

o o o

A

A
a

A

     

     

     



 
 
  
 
  
 

D








    



.

Let T
1 2( , , , )m   ω be the weight vector of all attributes, where 0 1j  ( 1,2, ,j m  ) is

weight of each attribute jo O , and
1

1
m

j
j




 . The attribute weights information is usually unknown
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or partially known due to the insufficient knowledge or limitation of time of decision makers in

the decision making process. Therefore, the determination of attribute weights is an important

issue in MADM problems. In this paper, we will put forward two methods to determine the

attribute weights for the above-mentioned two cases, respectively.

(1) MADM problem with unkown attribute weights information

It is easily shown that ( , ) 1 ( , )Rd A B S A B  is a distance measure of IFSs

{( , ( ), ( )) | }i A i A i iA x x x x X   and {( , ( ), ( )) | }i B i B i iB x x x x X   . Then when the information about the

attribute weights is completely unknown, we can use the maximizing deviation method (Wang,

1998) to derive the weights of attributes with the following formula:

1 1

1 1 1

( , )

, 1,2,...,

( , )

m m

ij kj
i k

j n m m

ij kj
j i k

d a a

w j n

d a a

 

  

 




 

 

(3)

where ( , )ij kjd a a  is the distance between ija and kja defined by ( , ) 1 ( , )ij kj R ij kjd a a S a a     .

(2) MADM problem with partially known attribute weights information

In real decision situations, due to the complexity and uncertainty of practical decision making

problems and the inherent subjective nature of human thinking, the attribute weights information

is usually partially known [36-40]. Generally, there will have more constraint conditions for

weight vector 1 2( , ,..., )T
nw w ww . We denote H as the set of the partially known weight

information, where H can be constructed by the following forms, for i j :

Case (i): A weak ranking: { }i jw w

Case (ii): A strict ranking: { }( 0)i j i iw w     ;

Case (iii): A ranking of differences: { }i j k lw w w w   , for j k l  ;

Case (iv): A ranking with multiples: { } (0 1)i i j iw w    ;

Case (v): An interval form: { } (0 1)i i i i i i iw            .

To determine the attribute weights for MADM problem with partially known attribute

weights information under intuitionistic fuzzy environment, Xu [40] proposed an optimization

model based on the Chen and Tan’s score function [41]; Wu and Zhang [42], Wang and Wang

[43] determined the attribute weights by establishing a programming model according to the

minimum entropy principle. In this paper, we will use the new similarity measure to determine

the attribute weights, and the method is similarly with Chen and Yang [36]. Then for the MADM

problem ( )ij n ma  D with incomplete attribute weight information w H , the decision making

process is given as follows:
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To rank the alternatives according to the decision matrix ( )ij m nD a   , we propose a method to

obtain the attribute weight vector by means of the proposed similarity measure of IFSs. Similarity

measure describes the degree of similarity between two IFSs. The weighted similarity measure of

alternative 1 2( , ,..., )i i i inA a a a    with the intuitionistic fuzzy positive ideal solution

1 2( , ,..., ) ((1,0), (1,0),..., (1,0))nA a a a       is defined as

2 2 2

1 1

1
( ) ( , ) [2 ( 1 ) ]

4

n n

i j R ij j j ij ij ij ij
j j

S A w S a a w    

 

          (4)

The larger the similarity measure between the alternative with positive ideal solution, the

better of the alternative is.

Hence, we can utilize the principle of maximization of similarity measure to get the attribute

weight vector by computing the following programming:

1

1

max ( ) ( , )

. . 1

n

i j R ij j
j

n

j
j

S A w S a a

s t w

H

















 

w

(5)

where H is the information set of attribute weights.

A reasonable attribute weights vector 1 2( , ,..., )nw w ww should make all the similarities

{ ( ) | 1,2,..., }iS A i m as large as possible under the condition w H . And each alternative is equally

likely important, hence we can establish the following optimization programming:

1 1 1

1

max ( ) ( , )

. . 1

m m n

i j R ij j
i i j

n

j
j

S S A w S a a

s t w



  



 





 



 

w H

(6)

By solving the Eq. (6), the optimal solution arg max S w is chosen as the optimal attribute

weights.

(3) The New MADM Method

In this subsection, we put forward the new MADM method based on the above-mentioned

work and the concept of TOPSIS. The specific calculation steps are given as follows:

Step 1. Calculate the attribute weights according to section (1) and section (2);

Step 2. Determine the positive ideal solution (PIS) and negative ideal solution (NIS) of the

intuitionistic fuzzy MADM problem.
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The PIS is defined as 1 2( , , , )nA a a a       , where ( , ) (1,0)j j ja      ( 1,2, ,j n  ).

The NIS is defined as 1 2( , , , )nA a a a       , where ( , ) (0,1)j j ja      ( 1,2, ,j n  ).

Step 3. According to the weighted similarity measure defined in Eq. (4), the similarity

measures between alternative iA with PIS and NIS are calculated respectively as follows:

2 2 2

1 1

1
( , ) [2 ( 1 ) ]

4

n n

i j R ij j j ij ij ij ij
j j

S w S a a w     

 

         

(7)

2 2 2

1 1

1
( , ) [1 ( 1 ) ]

4

n n

i j R ij j j ij ij ij ij
j j

S w S a a w     

 

         

(8)

Step 4. Calculate the relative closeness coefficient of each alternative.

The closeness coefficient iC represents the degree of similarity of each alternative to the PIS

and NIS simultaneously. The closeness coefficient of each alternative is calculated as:

( 1,2,..., )i
i

i i

S
C i m

S S



 
 



(9)

Step 5. Rank the alternatives according to the closeness coefficient ( iC ) in decreasing order.

The best alternative is closest to the PIS and farthest from the NIS.

Remark 3. By Eq.(7) and Eq.(8), it is easy to prove 1i iS S   , the closeness coefficient iC is

equal to iS  . Thus the above steps 3-5, can be briefly substituted by the following step:

Step 3’. Calculate the similarity measures iS  between alternative iA with PIS, and rank the

alternatives according to iS  in decreasing order.

5. Discussion

In order to illustrate the effectiveness and practicability of the proposed MADM method, two

examples are given as follows:

Example 3 (The attribute weights are complete unknown) Suppose that a company wants to

invest a sum of money in the best options which adopted from (Herrera and Herrera-Viedma

[44]; Ye [45]). There are four parallel alternatives to be selected: 1A (a car company), 2A (a food

company), 3A (a computer company), and 4A (an arms company). The evaluation attributes are

1o (the risk analysis), 2o (the growth analysis), and 3o (the environmental impact analysis). Using

statistical methods, the membership degree ij (i.e. ij means the satisfactory degree) and non-
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membership degree ij (i.e. ij means the non-satisfactory degree) for the alternative iA satisfies

the attribute jo can be obtained, respectively. The intuitionistic fuzzy decision matrix provided

by relevance experts is shown in Table 1.

Table 1. Intuitionistic fuzzy decision matrix

Alternative
Evaluation attribute

1o
2o 3o

1A (0.45,0.35) (0.50,0.30) (0.20,0.55)

2A (0.65,0.25) (0.65,0.25) (0.55,0.15)

3A (0.45,0.35) (0.55,0.35) (0.55,0.20)

4A (0.75,0.15) (0.65,0.20) (0.35,0.15)

The calculation steps of the proposed method are given as follows:

Step1. According to Eq. (3), the attribute weights vector is obtained as

 1 2 3( , , ) 0.3827,0.2060,0.4113
TTw w w w

Step 2. The PIS ( A ) is defined as:

1 2 3( , , ) ((1,0), (1,0), (1,0))A a a a      

Step 3. According to Eq. (7), the similarity measures of each alternative from PIS are

calculated as

1 2 30.3963, 0.6057, 0.5177S S S     , and 4 0.6093S   .

Therefore, the ranking order of all alternatives is 4 2 3 1A A A A   , and 4A is the desirable

alternative. This result is different with the one obtained in (Ye [45]), which the ranking order is

2 4 3 1A A A A   . The reason is that Ye’s [45] cosine similarity measure is only to consider the

information of membership degree and non-membership degree, but not to consider the middle

point information. Thus Ye’s cosine similarity measure has some drawbacks which was reviewed

in Section 2.

Example 4 (The attribute weights are partially known). The example is adopted from Li [46],

which considers an air-condition system selection problem. Suppose there are three air-condition

systems: ( 1,2,3)iA i  are to be selected. The evaluation attributes are 1o (economical),

2o (function), and 3o (being operative). Using statistical methods, we can obtain the membership

degree ij and non-membership degree ij for the alternative iA satisfying the attribute jo

respectively. The IF decision matrix provided by relevance experts is shown in Table 2.
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Table 2. Intuitionistic fuzzy decision matrix

Air-condition system
Evaluation attribute

1o
2o 3o

1A (0.75,0.1) (0.6,0.25) (0.8,0.2)

2A (0.8,0.15) (0.68,0.2) (0.45,0.5)

3A (0.4,0.45) (0.75,0.05) (0.6,0.3)

Assume the attribute weights are partially known, and the weights satisfies the set

1 2 3{0.25 0.75,0.35 0.60,0.30 0.35}w w w      H .

Then the calculation steps for the proposed decision making method is:

Step1. According to the Eq. (6), we can establish the following programming model:

1 2 3

1

2

3

1 2 3

max 1.9048 2.0019 1.7035

0.25 0.75

0.35 0.60
. .

0.30 0.35

1

S w w w

w

w
s t

w

w w w

  

 


 


 
   

We use Matlab software to solve this model, and get the optimum attribute weight vector

 0.25,0.45, 0.30
T

w .

Step 2. The PIS ( A ) is defined as:

1 2 3( , , ) ((1,0), (1,0), (1,0))A a a a      

Step 3. According to Eq. (3), the weighted similarity measures of each alternative from PIS

are calculated as

1 2 30.6731, 0.6048, 0.6102S S S    

Step 4. Based on values of iS  ( 1,2,3i  ), the ranking order of the alternatives is

1 3 2A A A  ,and 1A is the best desirable supplier, which is in agreement with the one obtained in

(Li [46]).

Remark 4. Intuitionistic fuzzy sets are suitable to model the vague information occurred in

many MADM problems. In this paper, we have proposed a new similarity measure of IFSs. The

new proposed similarity measures can overcome the counter-intuitive cases mentioned in the

existing similarity measure’s articles. This paper has given the application of the proposed

similarity measure in pattern recognition, and medical diagnosis. The analysis result proved that

the decision making method based on the proposed similarity measure is effective and feasible.
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6. Conclusions

Similarity measure is an important tool to measure the degree of resemblance between two

intuitionistic fuzzy sets. In this paper, in order to overcome the counter-intuitive in some cases, a

new similarity measure of intuitionistic fuzzy sets is constructed and successively applied in

pattern recognition and medical diagnosis and decision making problem. The proposed similarity

measure can also be applied to other areas, such as image processing, microelectronic fault

analysis. Furthermore, we put forward a new decision making method for the MADM problem in

which the attribute values are expressed by IFNs.

For the case of attribute weights complete unknown, we develop a weights determined

method according to the information theory, and for the case of attribute weights partially known,

we establish a optimization model using the proposed weighted similarity measure. Then

combining with the concept of TOPSIS, we give the specific calculation steps of the new

proposed decision making method. Based on the proposed intuitionistic similarity measure, a new

attribute weights determination method is put forward, and then we use it to the multi-attribute

decision making problem. Two numerical examples are used to illustrate the feasibility and

practicability of the proposed MADM method. As a prospect, the MADM method proposed in

this paper could be applied to other MADM problems, such as the evaluation project investment

risk, site selection and credit evaluation.
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